Conceptualizing Landscapes

A Comparative Study of Landscape Categories with Navajo and English-Speaking Participants
  • Alexander Klippel
  • David Mark
  • Jan Oliver Wallgrün
  • David Stea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9368)


Understanding human concepts, spatial and other, is not only one of the most prominent topics in the cognitive and spatial sciences; it is also one of the most challenging. While it is possible to focus on specific aspects of our spatial environment and abstract away complexities for experimental purposes, it is important to understand how cognition in the wild or at least with complex stimuli works, too. The research presented in this paper addresses emerging topics in the area of landscape conceptualization and explicitly uses a diversity fostering approach to uncover potentials, challenges, complexities, and patterns in human landscape concepts. Based on a representation of different landscapes (images) responses from two different populations were elicited: Navajo and the (US) crowd. Our data provides support for the idea of conceptual pluralism; we can confirm that participant responses are far from random and that, also diverse, patterns exist that allow for advancing our understanding of human spatial cognition with complex stimuli.


Landscape Category construction Cultural differences 


  1. Anselin, L.: Local indicators of spatial association - lisa. Geogr. Anal. 27(2), 93–115 (1995)CrossRefGoogle Scholar
  2. Boos, D., Stefanski, L.: Efron’s bootstrap. Significance 7(4), 186–188 (2010). doi: 10.1111/j.1740-9713.2010.00463.x CrossRefGoogle Scholar
  3. Boroditsky, L.: Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cogn. Psychol. 43, 1–22 (2001)CrossRefGoogle Scholar
  4. Crump, M.J.C., McDonnell, J.V., Gureckis, T.M., Gilbert, S.: Evaluating amazon’s mechanical turk as a tool for experimental behavioral research. PLoS ONE 8(3), e57410 (2013). doi: 10.1371/journal.pone.0057410 CrossRefGoogle Scholar
  5. Foucault, M.: The Order of Things: An Archaeology of the Human Sciences, Vintage Books edn. Vintage Books, New York (1994)Google Scholar
  6. Fritz, S. (2014). ERC funds IIASA crowdsourcing project - 2014 - IIASA. Accessed on
  7. Goldstone, R.: The role of similarity in categorization: providing a groundwork. Cognition 52(2), 125–157 (1994)CrossRefGoogle Scholar
  8. Goldstone, R.L., Barsalou, L.W.: Reuniting perception and conception. Cognition 65, 231–262 (1998)CrossRefGoogle Scholar
  9. Gumperz, J.J., Levinson, S.C. (eds.): Rethinking Linguistic Relativity. Cambridge University Press, Cambridge (1996)Google Scholar
  10. Habron, D.: Visual perception of wild land in Scotland. Landscape Urban Plann. 42(1), 45–56 (1998). doi: 10.1016/S0169-2046(98)00069-3 CrossRefGoogle Scholar
  11. Harnad, S.: To cognize is to categorize: Cognition is categorization. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, 1st edn. Elsevier, Amsterdam (2005)Google Scholar
  12. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)Google Scholar
  13. Jones, C.B., Purves, R.S.: Geographical information retrieval. Int. J. Geogr. Inf. Sci. 22(3), 219–228 (2008). doi: 10.1080/13658810701626343 CrossRefGoogle Scholar
  14. Keßler, C.: Context-aware semantics-based information retrieval. Univ., Diss.–Münster (2010). Dissertations in geographic information science, vol. 3. Amsterdam, Heidelberg: IOS-Press; AKA Akadem. VerlagsgesGoogle Scholar
  15. Klippel, A., Wallgrün, J.O., Yang, J., Mason, J.S., Kim, E.-K., Mark, D.M.: Fundamental cognitive concepts of space (and time): using cross-linguistic, crowdsourced data to cognitively calibrate modes of overlap. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 377–396. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. Klippel, A., Worboys, M., Duckham, M.: Identifying factors of geographic event conceptualisation. Int. J. Geogr. Inf. Sci. 22(2), 183–204 (2008)CrossRefGoogle Scholar
  17. Kwaśnicka, H., Jain, L.C. (eds.): Innovations in Intelligent Image Analysis. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  18. Marder, J. (2015). The Internet’s hidden science factory. Accessed 21 March 2015
  19. Malt, B.C., Sloman, S.A., Gennari, S.P., Shi, M., Wang, Y.: Knowing versus naming: Similarity and the linguistic categorization of artifacts. J. Mem. Lang. 40, 230–262 (1999)CrossRefGoogle Scholar
  20. Malt, B.C.: Category coherence in cross-cultural perspective. Cogn. Psychol. 29, 85–148 (1995)CrossRefGoogle Scholar
  21. PBS. (2015). The Internet’s hidden science factory. Accessed on
  22. Mark, D.M., Turk, A.G., Burenhult, N., Stea, D. (eds.): Landscape in Language. John Benjamins Publishing Company, Amsterdam (2011a)Google Scholar
  23. Mark, D.M., Turk, A.G., Burenhult, N., Stea, D.: Landscape in language: an introduction. In: Mark, D.M., Turk, A.G., Burenhult, N., Stea, D. (eds.) Landscape in Language, vol. 4, pp. 1–24. John Benjamins Publishing Company, Amsterdam (2011b)CrossRefGoogle Scholar
  24. Mark, D.M., Turk, A.G., Stea, D.: Progress on yindjibarndi ethnophysiography. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 1–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. Medin, D.L., Wattenmaker, W.D., Hampson, S.E.: Family resemblance, conceptual cohesiveness, and category construction. Cogn. Psychol. 19(2), 242–279 (1987)CrossRefGoogle Scholar
  26. Pattison, W.D.: The four traditions of geography. J. Geogr. 63(5), 211–216 (1964)CrossRefGoogle Scholar
  27. Rand, D.G.: The promise of Mechanical Turk: How online labor markets can help theorists run behavioral experiments: evolution of Cooperation. J. Theor. Biol. 299, 172–179 (2012). doi: 10.1016/j.jtbi.2011.03.004 CrossRefMathSciNetGoogle Scholar
  28. Rips, L.J.: Similarity, typicality and categorisation. In: Vosniadou, S., Ortony, A. (eds.) Similarity and Analogical Reasoning, pp. 21–59. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  29. Sparks, K., Klippel, A., Wallgrün, J.O., Mark, D.M.: Citizen science land cover classification based on ground and aerial imagery. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S.M., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. xx–yy. Springer, HeidelbergGoogle Scholar
  30. Sparks, K., Klippel, A., Wallgrün, J.O., Mark, D.M.: Crowdsourcing landscape perceptions to validate land cover classifications. In: Ahlqvist, O., Janowicz, K., Varanka, D., Fritz, S. (eds.) Land Use and Land Cover Semantics. Principles, Best Practices and Prospects, pp. 296–314. CRC Press, Boca Raton (2015b)Google Scholar
  31. Turk, A.G., Mark, D.M., Stea, D.: Enthnophysiography. In: Mark, D.M., Turk, A.G., Burenhult, N., Stea, D. (eds.) Landscape in Language, vol. 4, pp. 25–45. John Benjamins Publishing Company, Amsterdam (2011)CrossRefGoogle Scholar
  32. Ul-Qayyum, Z., Cohn, A.G., Klippel, A.: Psychophysical evaluation for a qualitative semantic image categorisation and retrieval approach. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part III. LNCS, vol. 6098, pp. 321–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. Wallgrün, J.O., Klippel, A., Mark, D.M.: A new approach to cluster validation in human studies on (geo)spatial concepts. In: Stewart, K., Pebesma, E., Navratil, G., Fogliaroni, P., Duckham, M. (eds.) Extended Abstract Proceedings of the GIScience 2014, pp. 450–453. Hochschülerschaft, TU Vienna, Vienna (2014)Google Scholar
  34. Wrisley III, G.A.: Realism and Conceptual Relativity (Doctor of Philosophy). The University of Iowa (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Klippel
    • 1
  • David Mark
    • 2
  • Jan Oliver Wallgrün
    • 1
  • David Stea
    • 3
  1. 1.Department of GeographyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of GeographyUniversity at BuffaloBuffaloUSA
  3. 3.Center for Global JusticeSan Miguel de AllendeMexico

Personalised recommendations