Skip to main content

Botrytis, the Good, the Bad and the Ugly

Abstract

Botrytis spp. are efficient pathogens, causing devastating diseases and significant crop losses in a wide variety of plant species. Here we outline our review of these pathogens, as well as highlight the major advances of the past 10 years in studying Botrytis in interaction with its hosts. Progress in molecular genetics and the development of relevant phylogenetic markers in particular, has resulted in the characterisation of approximately 30 species. The host range of Botrytis spp. includes plant species that are members of 170 families of cultivated plants.

Keywords

  • Host range
  • Control strategies
  • Genomics
  • Fungus-plant interaction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23371-0_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23371-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

Notes

  1. 1.

    http://urgi.versailles.inra.fr/Species/Botrytis

  2. 2.

    http://fungi.ensembl.org/Botrytis_cinerea/Info/Index

  3. 3.

    DBJ/EMBL/GenBank accession no.AORW00000000.

  4. 4.

    http://www.ncbi.nlm.nih.gov/gds/?term=Botrytis+cinerea[Organism]

  5. 5.

    http://botbioger.versailles.inra.fr/botmut/

References

  • Amselem J, Cuomo CA, Van Kan JAL et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Lebrun MH, Quesneville H (2015) Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics 16:141

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Azzolini M, Tosi E, Faccio S et al (2013) Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. FEMS Yeast Res 13:540–552

    CAS  CrossRef  PubMed  Google Scholar 

  • Biémont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Blanco-Ulate B, Allen G, Powell AL et al (2013) Draft genome sequence of Botrytis cinerea BcDW1, inoculum for noble rot of grape berries. Genome Announc 1:e00252-13

    PubMed  PubMed Central  Google Scholar 

  • Blanco-Ulate B, Morales-Cruz A, Amrine KC, et al (2014) Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci 5:435. doi:10.3389/fpls.2014.00435

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bokor AAM, Van Kan JAL, Poulter RTM (2010) Sexual mating of Botrytis cinerea illustrates PRP8 intein HEG activity. Fungal Genet Biol 47:392–398

    CAS  CrossRef  PubMed  Google Scholar 

  • Bokor AAM, Kohn LM, Poulter RTM et al (2012) PRP8 inteins in species of the genus Botrytis and other ascomycetes. Fungal Genet Biol 49:250–261

    CAS  CrossRef  PubMed  Google Scholar 

  • Campbell MA, Staats M, Van Kan JA et al (2013) Repeated loss of an anciently horizontally transferred gene cluster in Botrytis. Mycologia 105:1126–1134

    CrossRef  PubMed  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (eds) (2004) Botrytis: biology, pathology and control. Kluwer Academic Publishers (Springer), Dordrecht, 416 pp

    Google Scholar 

  • Epton HAS, Richmond DV (1980) Formation, structure and germination of conidia. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 41–83

    Google Scholar 

  • Faretra F, Antonacci E, Pollastro S (1988) Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. J Gen Microbiol 134:2543–2550

    Google Scholar 

  • Fenner K, Canonica S, Wackett LP et al (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758

    CAS  CrossRef  PubMed  Google Scholar 

  • Fournier E, Gladieux P, Giraud T (2013) The ‘Dr Jekyll and Mr Hyde fungus’: noble rot versus gray mold symptoms of Botrytis cinerea on grapes. Evol Appl 6:960–969

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Frias M, Gonzalez C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–495

    CAS  CrossRef  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    CAS  CrossRef  PubMed  Google Scholar 

  • Grant-Downton RT, Terhem RB, Kapralov MV et al (2014) A novel Botrytis species is associated with a newly emergent foliar disease in cultivated hemerocallis. PLoS ONE 9(6):e89272

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jarvis WR (1977) Botrytinia and Botrytis species: taxonomy, physiology, and pathogenicity, a guide to the literature, Monograph No. 15. Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Knip M, Constantin ME, Thordal-Christensen H (2014) Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet 10(9):e1004602

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Leroch M, Plesken C, Weber RW et al (2013) Gray mold populations in german strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79:159–167

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu X-Q, Yang J (2004) Prp8 intein in fungal pathogens: target for potential antifungal drugs. FEBS Lett 572:46–50

    CAS  CrossRef  PubMed  Google Scholar 

  • Magyar I (2011) Botrytized wines. In: Ronald SJ (ed) Advances in food and nutrition research, vol 63. Academic, San Diego, pp 147–206

    Google Scholar 

  • Mehari ZH, Elad Y, Rav-David D et al (2015) Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil. doi:10.1007/s11104-015-2445-1

    Google Scholar 

  • Meller Harel Y, Haile Mehari Z, Rav-David D et al (2014) Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157

    CrossRef  Google Scholar 

  • Mlikota Gabler F, Mercier J, Jiménez JI et al (2010) Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biol Technol 55:78–84

    CrossRef  Google Scholar 

  • Plesken C, Weber RW, Rupp S, et al. (2015) Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Appl Environ Microbiol. doi:10.1128/AEM.01719-15

    Google Scholar 

  • Romanazzi G, Lichter A, Mlikota Gabler F et al (2012) Natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147

    CAS  CrossRef  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497

    CAS  CrossRef  PubMed  Google Scholar 

  • Schumacher J, Tudzynski P (2012) Morphogenesis and infection in Botrytis cinerea. In: Pérez-Martín J, Di Pietro A (eds) Topics in current genetics, vol. morphogenesis and pathogenicity in fungi. Springer, Berlin, pp 225–241

    CrossRef  Google Scholar 

  • Schumacher J, Pradier JM, Simon A, et al. (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS One 7(10):e47840. doi:10.1371/journal.pone.0047840

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC et al (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Simon A, Dalmais B, Morgant G et al (2013) Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 52:9–19

    CAS  CrossRef  PubMed  Google Scholar 

  • Staats M, Van Kan JAL (2012) Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell 11:1413–1414

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van Kan JA, Shaw MW, Grant-Downton RT (2014) Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961

    PubMed  Google Scholar 

  • Verger PJ, Boobis AR (2013) Global food supply. Reevaluate pesticides for food security and safety. Science 341:717–718

    CAS  CrossRef  PubMed  Google Scholar 

  • Walker A-S, Gautier A, Confais J et al (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–1445

    CrossRef  PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wingfield MJ, De Beer ZW, Slippers B et al (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13:604–613

    CAS  CrossRef  PubMed  Google Scholar 

  • Windram O, Madhou P, McHattie S, et al (2012) Arabidopsis Defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557

    Google Scholar 

Download references

Acknowledgements

We are grateful to Adeline Simon, Matthias Hahn, and Jan van Kan for critical reading of the manuscript and for unpublished data. We thank Dario Cantu, Robert Marschall, and Julia Schumacher for providing us with macroscopic and microscopic illustrations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yigal Elad or Sabine Fillinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elad, Y., Vivier, M., Fillinger, S. (2016). Botrytis, the Good, the Bad and the Ugly. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_1

Download citation