International Conference on Brain Informatics and Health

BIH 2015: Brain Informatics and Health pp 125-134 | Cite as

Minimum Partial Correlation: An Accurate and Parameter-Free Measure of Functional Connectivity in fMRI

  • Lei Nie
  • Xian Yang
  • Paul M. Matthews
  • Zhiwei Xu
  • Yike Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9250)

Abstract

Functional connectivity, a data-driven modelling of spontaneous fluctuations in activity in spatially segregated brain regions, has emerged as a promising approach to generate hypotheses and features for prediction. The most widely used method for inferring functional connectivity is full correlation, but it cannot differentiate direct and indirect effects. This disadvantage is often avoided by fully partial correlation, but this method suffers from Berkson’s paradox. Some advanced methods, such as regularised inverse covariance and Bayes nets, have been applied. However, the connectivity inferred by these methods usually depends on crucial parameters. This paper suggests minimum partial correlation as a parameter-free measure of functional connectivity in fMRI. An algorithm, called elastic PC-algorithm, is designed to approximately calculate minimum partial correlation. Our experimental results show that the proposed method is more accurate than full correlation, fully partial correlation, regularised inverse covariance, network deconvolution algorithm and global silencing algorithm in most cases.

Keywords

fMRI Functional connectivity Partial correlation PC-algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barzel, B., Barabási, A.L.: Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31(8), 720–725 (2013)CrossRefGoogle Scholar
  2. 2.
    Berkson, J.: Limitations of the application of fourfold table analysis to hospital data. Biometrics Bulletin, pp. 47–53 (1946)Google Scholar
  3. 3.
    Buckner, R.L., Krienen, F.M., Yeo, B.T.: Opportunities and limitations of intrinsic functional connectivity mri. Nature Neuroscience 16(7), 832–837 (2013)CrossRefGoogle Scholar
  4. 4.
    Chenga, J., Greinera, R., Kellya, J., Bellb, D., Liub, W.: Learning bayesian networks from data: an information-theory based approach. Artificial Intelligence 137, 43–90 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. Journal of Machine Learning Research 15, 3741–3782 (2014)MathSciNetGoogle Scholar
  6. 6.
    Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)CrossRefGoogle Scholar
  7. 7.
    Feizi, S., Marbach, D., Médard, M., Kellis, M.: Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology 31(8), 726–733 (2013)CrossRefGoogle Scholar
  8. 8.
    Fisher, R.A.: The distribution of the partial correlation coefficient. Metron 3, 329–332 (1924)Google Scholar
  9. 9.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1(1), 13–36 (2011)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)CrossRefGoogle Scholar
  12. 12.
    Hawellek, D.J., Hipp, J.F., Lewis, C.M., Corbetta, M., Engel, A.K.: Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proceedings of the National Academy of Sciences 108(47), 19066–19071 (2011)CrossRefGoogle Scholar
  13. 13.
    Hermundstad, A.M., Bassett, D.S., Brown, K.S., Aminoff, E.M., Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C.M., Miller, M.B., et al.: Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences 110(15), 6169–6174 (2013)CrossRefGoogle Scholar
  14. 14.
    Hinne, M., Ambrogioni, L., Janssen, R.J., Heskes, T., van Gerven, M.A.: Structurally-informed bayesian functional connectivity analysis. Neuroimage 86, 294–305 (2014)CrossRefGoogle Scholar
  15. 15.
    Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., Benali, H.: Partial correlation for functional brain interactivity investigation in functional mri. Neuroimage 32(1), 228–237 (2006)CrossRefGoogle Scholar
  16. 16.
    Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT press (2012)Google Scholar
  17. 17.
    Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press (2000)Google Scholar
  18. 18.
    Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex 22(1), 158–165 (2012)CrossRefGoogle Scholar
  19. 19.
    Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)CrossRefGoogle Scholar
  20. 20.
    Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT press (2000)Google Scholar
  21. 21.
    Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)CrossRefGoogle Scholar
  22. 22.
    Turk-Browne, N.B.: Functional interactions as big data in the human brain. Science 342(6158), 580–584 (2013)CrossRefGoogle Scholar
  23. 23.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  24. 24.
    Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  25. 25.
    Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)Google Scholar
  26. 26.
    Wang, Z., Chan, L.: Learning bayesian networks from markov random fields: an efficient algorithm for linear models. ACM Transactions on Knowledge Discovery from Data 6(3), 10 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lei Nie
    • 1
    • 2
  • Xian Yang
    • 1
  • Paul M. Matthews
    • 3
  • Zhiwei Xu
    • 2
  • Yike Guo
    • 1
    • 4
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  3. 3.Department of MedicineImperial College LondonLondonUK
  4. 4.School of Computer Engineering and ScienceShanghai UniversityShanghaiChina

Personalised recommendations