International Conference on Brain Informatics and Health

BIH 2015: Brain Informatics and Health pp 105-114 | Cite as

Identification of Discriminative Subgraph Patterns in fMRI Brain Networks in Bipolar Affective Disorder

  • Bokai Cao
  • Liang Zhan
  • Xiangnan Kong
  • Philip S. Yu
  • Nathalie Vizueta
  • Lori L. Altshuler
  • Alex D. Leow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9250)

Abstract

Using sophisticated graph-theoretical analyses, modern magnetic resonance imaging techniques have allowed us to model the human brain as a brain connectivity network or a graph. In a brain network, the nodes of the network correspond to a set of brain regions and the link or edges correspond to the functional or structural connectivity between these regions. The linkage structure in brain networks can encode valuable information about the organizational properties of the human brain as a whole. However, the complexity of such linkage information raises major challenges in the era of big data in brain informatics. Conventional approaches on brain networks primarily focus on local patterns within select brain regions or pairwise connectivity between regions. By contrast, in this study, we proposed a graph mining framework based on state-of-the-art data mining techniques. Using a statistical test based on the G-test, we validated this framework in a sample of euthymic bipolar I subjects, and identified abnormal subgraph patterns in the rsfMRI networks of these subjects relative to healthy controls.

Keywords

Data mining Bipolar disorder Brain network Subgraph pattern Feature selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajilore, O., Zhan, L., GadElkarim, J., Zhang, A., Feusner, J.D., Yang, S., Thompson, P.M., Kumar, A., Leow, A.: Constructing the resting state structural connectome. Frontiers in Neuroinformatics 7 (2013)Google Scholar
  2. 2.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300 (1995)Google Scholar
  3. 3.
    Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 34(4), 537–541 (1995)CrossRefGoogle Scholar
  4. 4.
    Cheng, H., Lo, D., Zhou, Y., Wang, X., Yan, X.: Identifying bug signatures using discriminative graph mining. In: ISSTA, pp. 141–152. ACM (2009)Google Scholar
  5. 5.
    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping 33(8), 1914–1928 (2012)CrossRefGoogle Scholar
  6. 6.
    GadElkarim, J.J., Ajilore, O., Schonfeld, D., Zhan, L., Thompson, P.M., Feusner, J.D., Kumar, A., Altshuler, L.L., Leow, A.D.: Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation. Human Brain Mapping 35(5), 2253–2264 (2014)CrossRefGoogle Scholar
  7. 7.
    Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878 (2002)CrossRefGoogle Scholar
  8. 8.
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences 100(1), 253–258 (2003)CrossRefGoogle Scholar
  9. 9.
    Huang, S., Li, J., Ye, J., Wu, T., Chen, K., Fleisher, A., Reiman, E.: Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp. 1431–1439 (2011)Google Scholar
  10. 10.
    Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C., Shen, D.: Integration of network topological and connectivity properties for neuroimaging classification. Biomedical Engineering 61(2), 576 (2014)Google Scholar
  11. 11.
    Jin, N., Young, C., Wang, W.: GAIA: graph classification using evolutionary computation. In: SIGMOD, pp. 879–890. ACM (2010)Google Scholar
  12. 12.
    Kong, X., Ragin, A.B., Wang, X., Yu, P.S.: Discriminative feature selection for uncertain graph classification. In: SDM, pp. 82–93. SIAM (2013)Google Scholar
  13. 13.
    Kong, X., Yu, P.S.: Brain network analysis: a data mining perspective. ACM SIGKDD Explorations Newsletter 15(2), 30–38 (2014)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ogawa, S., Lee, T., Kay, A., Tank, D.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences 87(24), 9868–9872 (1990)CrossRefGoogle Scholar
  15. 15.
    Ogawa, S., Lee, T.-M., Nayak, A.S., Glynn, P.: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine 14(1), 68–78 (1990)CrossRefGoogle Scholar
  16. 16.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  17. 17.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Computational Biology 1(4), e42 (2005)CrossRefGoogle Scholar
  18. 18.
    Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.-P., Smola, A.J., Song, L., Philip, S.Y., Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection among frequent subgraphs. In: SDM, pp. 1076–1087. SIAM (2009)Google Scholar
  19. 19.
    Wang, X., Foryt, P., Ochs, R., Chung, J.-H., Wu, Y., Parrish, T., Ragin, A.B.: Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connectivity 1(3), 207–217 (2011)CrossRefGoogle Scholar
  20. 20.
    Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of mci individuals using structural and functional connectivity networks. Neuroimage 59(3), 2045–2056 (2012)CrossRefGoogle Scholar
  21. 21.
    Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2(3), 125–141 (2012)CrossRefGoogle Scholar
  22. 22.
    Xia, M., Wang, J., He, Y.: Brainnet viewer: a network visualization tool for human brain connectomics. PloS One 8(7), e68910 (2013)CrossRefGoogle Scholar
  23. 23.
    Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap search. In: SIGMOD, pp. 433–444. ACM (2008)Google Scholar
  24. 24.
    Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R., Bae, M., Janardan, R., Liu, H., Alexander, G., et al.: Heterogeneous data fusion for alzheimer’s disease study. In: KDD, pp. 1025–1033. ACM (2008)Google Scholar
  25. 25.
    Zalesky, A., Fornito, A., Bullmore, E.T.: Network-based statistic: identifying differences in brain networks. Neuroimage 53(4), 1197–1207 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bokai Cao
    • 1
  • Liang Zhan
    • 2
  • Xiangnan Kong
    • 3
  • Philip S. Yu
    • 1
    • 4
  • Nathalie Vizueta
    • 5
  • Lori L. Altshuler
    • 5
  • Alex D. Leow
    • 6
  1. 1.Department of Computer ScienceUniversity of IllinoisChicagoUSA
  2. 2.Laboratory of Neuro Imaging, Department of NeurologyUCLALos AngelesUSA
  3. 3.Department of Computer ScienceWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Institute for Data ScienceTsinghua UniversityBeijingChina
  5. 5.Department of Psychiatry and Behavioral SciencesUCLA Semel Institute for Neuroscience and Human BehaviorLos AngelesUSA
  6. 6.Department of PsychiatryUniversity of IllinoisChicagoUSA

Personalised recommendations