Skip to main content

A Variational Approach for Physically Based Image Interpolation Across Boundaries

  • Conference paper
Multiple Shooting and Time Domain Decomposition Methods

Abstract

In this contribution we present an optimal control approach for physics-based optical flow estimation and image interpolation. The aim of the developed process is to identify appropriate boundary data of an underlying physical model describing the transport field, which reason the movement of an initial brightness distribution. Thereby, the flow field as solution of the time-dependent non-linear Navier-Stokes equations is coupled to a transport dominant convection-diffusion equation describing the brightness intensity. Thus, we have to deal with a weakly coupled PDE system as state equation of a PDE constrained optimisation problem. The data is given in form of consecutive images, with a sparse temporal resolution, representing the brightness distribution at different time points. We will present the mathematical theory of the resulting optimisation problem, which is based on a Robin-type boundary control. We describe the numerical solution process and present by means of synthetical test cases the functionality of the method. Finally we discuss the application of multiple shooting techniques for the considered problem, since we observed that the employed Newton-type method is very sensitive with respect to the chosen initial value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachl, F., Garbe, C., Fieguth, P.: A Bayesian approach to apaceborn hyperspectral optical flow estimation on dust aerosols. In: Geoscience and Remote Sensing Symposium (IGARSS), pp. 256–259 (2012)

    Google Scholar 

  2. Bachl, F., Garbe, C., Fieguth, P.: Baysian inference on integrated continuity fluid flows and their application to dust aerosols. In: Geoscience and Remote Sensing Symposium (IGARSS), pp. 2246–2249 (2013)

    Google Scholar 

  3. Becker, R.: Mesh adaptation for Dirichlet flow control via Nitsche’s method. Commun. Numer. Meth. Eng. 18(9), 669–680 (2002)

    Article  MATH  Google Scholar 

  4. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier-Stokes equations. In: Proceedings of ENUMATH (2003)

    Google Scholar 

  6. Becker, R., Meidner, M., Vexler, B.: RoDoBo: A C++ Library for Optimization with Stationary and Nonstationary PDEs. Institute of Applied Mathematics, Heidelberg University, Heidelberg. http://www.rodobo.org (2005)

  7. Belgacem, F., Fekih, H., Metoui, H.: Singular pertubation for the Dirichlet boundary control of elliptic problems. ESAIM 37(5), 833–850 (2003)

    Article  MATH  Google Scholar 

  8. Borzi, A., Ito, K., Kunisch, K.: Optimal control formulation for determining optical flow. SIAM J. Sci. Comput. 24(3), 818–847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braess, D.: Finite Elemente, vol. 4. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  10. Brenner, S., Scott, L.: The Mathematical Theory of the Finite Element Method, vol. 3. Springer, Berlin (2007)

    Google Scholar 

  11. Carraro, T., Geiger, M.: Direct and indirect multiple shooting for parabolic optimal control problems. In: Thomas, C., Michael, G., Stefan, K., Rolf, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods. Springer, Heidelberg (2015, in this issue)

    Google Scholar 

  12. Carraro, T., Geiger, M., Rannacher, R.: Indirect multiple shooting for nonlinear parabolic optimal control problems with control constraints. SIAM J. Sci. Comput. 36(2), 452–481 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, K., Lorenz, D.: Image sequence interpolation based on optical flow, image segmentation and optimal control. IEEE Trans. Image Process. 21(3), 1020–1030 (2012)

    Article  MathSciNet  Google Scholar 

  14. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  15. Evans, L: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  16. Farwig, R., Kozono, H., Sohr, H.: Very weak, weak and strong solutions to the instationary Navier-Stokes system. In: Kaplicky, P., Necasova, S. (eds.) Topics on Partial Differential Equations, vol. 2, pp. 1–54. Publishing House of the Faculty of Mathematics and Physics Charles University, Prague (2007)

    Google Scholar 

  17. Freund, J., Stenberg, R.: On weakly imposed boundary conditions for second order problems. In: Proceedings of the International Conference on Finite Elements in Fluids, pp. 327–336 (1995)

    Google Scholar 

  18. Gunzburger, M., Kunoth, A.: Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equation. SIAM J. Control Optim. 49(3), 1150–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Héas, P., Mémin, E., Papadakis, N., Szantai, A.: Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans. Geosci. Remote Sens. 45(12), 4087–4104 (2007)

    Article  Google Scholar 

  20. Heitz, D., Memin, E., Schnörr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids. Published Online (2009)

    Google Scholar 

  21. Hesse, H.K., Kanschat, G.: Mesh adaptive multiple shooting for partial differential equations. Part I: linear quadratic optimal control problems. J. Numer. Math. 17(3), 195–217 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Horn, B.K.P, Schunck, B.G.: Determining optical flow. Artif. Intell. 14, 185–203 (1981)

    Article  Google Scholar 

  23. Hou, L., Ravindran, S.: A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 36(5), 1795–1814 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comput. 78(5), 1353–1373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klinger, M.: Parameter estimation problems in physically based image processing. In: Proceedings of ENUMATH 2011, pp. 191–199 (2013)

    MathSciNet  Google Scholar 

  26. Kolmbauer, M., Langer, U.: Efficient solvers for some classes of time-periodic eddy current optimal control problems. In: Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer, New York, pp. 203–216 (2013)

    Google Scholar 

  27. May, S., Rannacher, R., Vexler, B.: A priori error analysis for the finite element approximation of elliptic Dirichlet boundary control problems. In: Proceedings of ENUMATH 2007, pp. 637–644 (2007)

    Google Scholar 

  28. Meidner, D.: Adaptive space-time finite element methods for optimization problems governed by nonlinear parabolic systems. Ph.D. thesis, Heidelberg University (2008)

    Google Scholar 

  29. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recogn. 36, 1203–1212 (2003)

    Article  Google Scholar 

  30. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Of, G., Phan, T., Steinbach, O.: An energy space finite elliptic Dirichlet boundary control problem. SFB-Report No. 2009-001, Uni Graz (2012)

    Google Scholar 

  32. Papadakis, N., Mémin, E.: Variational assimilation of fluid motion from image sequences. SIAM J. Image Sci. 1(4), 343–363 (2008)

    Article  MATH  Google Scholar 

  33. Pearson, J., Stoll, M.: Fast iterative solution of reaction-diffusion control problems arising from chemical processes. SIAM 35(5), 987–1009 (2013)

    MathSciNet  Google Scholar 

  34. Potschka, A.: A Direct Method for the Numerical Solution of Optimization Problems with Time-Periodic PDE Constraints. Springer, Berlin (2014)

    Book  Google Scholar 

  35. Ruhnau, P.: Variational fluid motion estimation with physical priors. Ph.D. thesis, Mannheim University (2006)

    Google Scholar 

  36. Ruhnau, P., Schnörr, C.: Optical Stokes flow estimation: an imaging-based control approach. Exp. Fluids 42, 61–78 (2007)

    Article  Google Scholar 

  37. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18(3), 755–763 (2007)

    Article  Google Scholar 

  38. Stoll, M., Wathen, A.: All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232, 498–515 (2013)

    Article  MathSciNet  Google Scholar 

  39. Temam, R.: Navier-Stokes Equations. AMS Chelsea Edition, North-Holland (1977)

    MATH  Google Scholar 

  40. Weiss, R.: The convergence of shooting methods. BIT 13, 470–475 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This article is based on collaboration with Prof. Dr. Dr. h.c. R. Rannacher (IAM, Heidelberg University) and Priv.-Doz. Dr. C.S. Garbe (IPM, Heidelberg University). Furthermore M. Geiger and Dr. T. Carraro (both IAM, Heidelberg University) supported the author to connect the content to the time decomposition topic in the conclusions. The author gratefully acknowledges all mentioned persons for many fruitful discussions and for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Klinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klinger, M. (2015). A Variational Approach for Physically Based Image Interpolation Across Boundaries. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds) Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23321-5_13

Download citation

Publish with us

Policies and ethics