Skip to main content

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools

  • Conference paper
  • First Online:
Isogeometric Analysis and Applications 2014

Abstract

igatools is a newly released library for operators assembly in isogeometric analysis. The library, which is object oriented designed and written in C++11, is general purpose, therefore it is not devoted to any specific application. In this paper we show that such a design makes igatools an effective tool in assembling isogeometric discretizations of sophisticated differential operators. This effectiveness will be demonstrated showing code snippets relating one-to-one with the operators written on paper. To embrace a wide audience, applications from nonlinear incompressible solid and fluid mechanics will be addressed. In both cases we are going to deal with mixed isogeometric formulations. The applicative nature of this paper will be stressed solving industrially relevant tests cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, R.L. Taylor, P. Wriggers, Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52(5), 1153–1167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Google Scholar 

  3. W. Bangerth, T. Heister, G. Kanschat, deal.II Differential Equations Analysis Library, Technical Reference, http://www.dealii.org

  4. Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199(13–16), 780–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Becker, Working draft, standard for programming language C++. Technical Report N3242=11-0012, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, Feb 2011

    Google Scholar 

  8. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer, London, 2013)

    Google Scholar 

  9. D. Boffi, C. Lovadina, Analysis of new augmented lagrangian formulations for mixed finite element schemes. Numerische Mathematik 75(4), 405–419 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: stability analysis by the macro element technique. IMA J. Numer. Anal. (2012)

    Google Scholar 

  11. A. Buffa, D. Cho, G. Sangalli, Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods Appl. Mech. Eng. 199(23–24), 1437–1445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.D. Cook, Improved two-dimensional finite element. J. Struct. Div. 100, 1851–1863 (1974)

    Google Scholar 

  13. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Dokken, T. Lyche, K.F. Pettersen, Locally refinable splines over box-partitions. Technical report, SINTEF, Feb 2012

    Google Scholar 

  15. M. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 264–275 (2009)

    MathSciNet  MATH  Google Scholar 

  16. T. Elguedj, Y. Bazilevs, V.M. Calo, T.J.R. Hughes, B-bar and f-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity based on higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)

    Article  MATH  Google Scholar 

  17. H.C. Elman, D.J. Silvester, A.J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90, 665–688 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  19. J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-spline for the steady Navier-Stokes equations. Math. Models Methods Appl. Sci. 23(8), 1421–1478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.R. Forsey, R.H. Bartels, Hierarchical B-spline refinement, in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88), Atlanta, 1988, pp. 205–212

    Google Scholar 

  21. U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  22. C. Giannelli, B. Jüttler, H. Speleers, THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. D. 29, 485–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Glowinski, P.G. Ciarlet, J.L. Lions, Numerical Methods for Fluids. Handbook of Numerical Analysis, vol. 3 (Elsevier, Amsterdam, 2002)

    Google Scholar 

  24. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. igatools 0.3.0, An isogeometric analisys tool library – documentation and manual, Oct 2014

    Google Scholar 

  26. ISO/IEC 14882:2011 – Information technology – programming languages – C++, 2011

    Google Scholar 

  27. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    Article  MATH  Google Scholar 

  28. K.M. Mathisen, K.M. Okstad, T. Kvamsdal, S.B. Raknes, Isogeometric analysis of finite deformation nearly incompressible solids. Rakenteiden Mekaniikka (J. Struct. Mech.) 44(3), 260–278 (2011)

    Google Scholar 

  29. M.S. Pauletti, M. Martinelli, N. Cavallini, P. Antolin, Igatools: an isogeometric analysis library. I.M.A.T.I.-C.N.R., 2014, pp. 1–27

    Google Scholar 

  30. L.A. Piegl, W. Tiller, The NURBs Book. Monographs in Visual Communication Series (Springer, Berlin/New York, 1997)

    Google Scholar 

  31. L.L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  32. M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng. 213–216, 206–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Taylor, Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Methods Eng. 87(1–5), 273–288 (2010)

    MathSciNet  MATH  Google Scholar 

  34. A.-V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554–3567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. O. Weeger, U. Wever, B. Simeon, Isogeometric analysis of nonlinear Euler Bernoulli beam vibrations. Nonlinear Dyn. 72(4), 813–835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Wriggers, Nonlinear Finite Element Methods (Springer, Berlin, 2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Lovadina for the useful discussion. N. Cavallini and O. Weeger have been supported by the TERRIFIC project, European Community’s Seventh Framework Programme, Grant Agreement 284981 Call FP7-2011-NMP-ICT-FoF. In all the experiments in this paper we used linear algebra packages from deal.II [2, 3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Cavallini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cavallini, N., Weeger, O., Pauletti, M.S., Martinelli, M., Antolín, P. (2015). Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools . In: Jüttler, B., Simeon, B. (eds) Isogeometric Analysis and Applications 2014. Lecture Notes in Computational Science and Engineering, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-23315-4_9

Download citation

Publish with us

Policies and ethics