Skip to main content

The Isogeometric Segmentation Pipeline

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 107)

Abstract

We present a pipeline for the conversion of 3D models into a form suitable for isogeometric analysis (IGA). The input into our pipeline is a boundary represented 3D model, either as a triangulation or as a collection of trimmed non-uniform rational B-spline (NURBS) surfaces. The pipeline consists of three stages: computer aided design (CAD) model reconstruction from a triangulation (if necessary); segmentation of the boundary-represented solid into topological hexahedra; and volume parameterization. The result is a collection of volumetric NURBS patches. In this paper we discuss our methods for the three stages, and demonstrate the suitability of the result for IGA by performing stress simulations with examples of the output.

Keywords

  • Non-uniform Rational B-splines (NURBS)
  • Isogeometric Analysis (IGA)
  • Boundary Representation
  • Hexahedra
  • Trimmed NURBS Surface

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23315-4_3
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23315-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs,Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester/Hoboken, 2009)

    CrossRef  Google Scholar 

  2. M.S. Floater, Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des.14(3), 231–250 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. M.S. Floater, Mean value coordinates. Comput. Aided Geom. Des.20(1), 19–27 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, A.-V. Vuong, Isogeometric simulation of turbine blades for aircraft engines. Comput. Aided Geom. Des.29(7), 519–531 (2012). Geometric Modeling and Processing 2012

    Google Scholar 

  5. S. Han, J. Xia, Y. He, Constructing hexahedral shell meshes via volumetric polycube maps. Comput.-Aided Des.43(10), 1222–1233 (2011)

    CrossRef  Google Scholar 

  6. B. Jüttler, M. Kapl, D.-M. Nguyen, Q. Pan, M. Pauley, Isogeometric segmentation: the case of contractible solids without non-convex edges. Comput.-Aided Des.57, 74–90 (2014)

    MathSciNet  CrossRef  Google Scholar 

  7. U. Langer, I. Toulopoulos, Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. Technical Report 1408.0182, arxiv.org, 2014

    Google Scholar 

  8. Y. Lu, R. Gadh, T.J. Tautges, Feature based hex meshing methodology: feature recognition and volume decomposition. Comput.-Aided Des.33(3), 221–232 (2001)

    CrossRef  Google Scholar 

  9. T. Martin, E. Cohen, Volumetric parameterization of complex objects by respecting multiple materials. Comput. Graph.34(3), 187–197 (2010). Shape Modelling International (SMI) Conference 2010

    Google Scholar 

  10. T. Martin, E. Cohen, R.M. Kirby, Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput. Aided Geom. Des.26(6), 648–664 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. T. Nguyen, B. Jüttler, Parameterization of contractible domains using sequences of harmonic maps, inCurves and surfaces. Lecture Notes in Computer Science, vol. 6920 (Springer, Heidelberg, 2012), pp. 501–514

    Google Scholar 

  12. D.-M. Nguyen, M. Pauley, B. Jüttler, Isogeometric segmentation. Part II: on the segmentability of contractible solids with non-convex edges. Graph. Models76(5), 426–439 (2014). Geometric Modeling and Processing 2014

    Google Scholar 

  13. D.-M. Nguyen, M. Pauley, B. Jüttler, Isogeometric segmentation: construction of auxiliary curves. Comput.-Aided Des.70, 89–99 (2016). Proceedings of GDSPM 2015, conditionally accepted

    Google Scholar 

  14. M. Nieser, U. Reitebuch, K. Polthier, CubeCover – parameterization of 3D volumes. Comput. Graph. Forum30(5), 1397–1406 (2011)

    CrossRef  Google Scholar 

  15. A. Sheffer, M. Etzion, A. Rappoport, M. Bercovier, Hexahedral mesh generation using the embedded Voronoi graph, inProceedings of the 7th International Meshing Roundtable, Sandia National Laboratories (1999), pp. 347–364

    Google Scholar 

  16. B. Strodthoff, M. Schifko, B. Jüttler, Horizontal decomposition of triangulated solids for the simulation of dip-coating processes. Comput.-Aided Des.43(12), 1891–1901 (2011)

    CrossRef  Google Scholar 

  17. T.J. Tautges, T. Blacker, S.A. Mitchell, The whisker weaving algorithm: a connectivity-based method for constructing all-hexahedral finite element meshes. Int. J. Numer. Methods Eng.39(19), 3327–3349 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. T. Varady, R. Martin, Reverse engineering, inHandbook of Computer Aided Geometric Design, ed. by G. Farin, J. Hoschek, M.-S. Kim (North-Holland, Amsterdam, 2002), pp. 651–681

    CrossRef  Google Scholar 

  19. X. Wang, X. Qian, An optimization approach for constructing trivariateB-spline solids. Comput.-Aided Des.46, 179–191 (2014)

    MathSciNet  CrossRef  Google Scholar 

  20. W. Wang, Y. Zhang, L. Liu, T.J.R. Hughes, Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology. Comput.-Aided Des.45(2), 351–360 (2013)

    MathSciNet  CrossRef  Google Scholar 

  21. D. White, L. Mingwu, S.E. Benzley, G.D. Sjaardema, Automated hexahedral mesh generation by virtual decomposition, in Proceedings of the 4th International Meshing Roundtable, Sandia National Laboratories (1995), pp. 165–176

    Google Scholar 

  22. G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput.-Aided Des.45(2), 395–404 (2013)

    MathSciNet  CrossRef  Google Scholar 

  23. W. Yu, K. Zhang, S. Wan, X. Li, Optimizing polycube domain construction for hexahedral remeshing. Comput.-Aided Des.46, 58–68 (2014)

    MathSciNet  CrossRef  Google Scholar 

  24. Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput. Methods Appl. Mech. Eng.195, 942–960 (2006)

    CrossRef  MATH  Google Scholar 

  25. Y. Zhang, W. Wang, T.J.R. Hughes, Solid T-spline construction from boundary representations for genus-zero geometry. Comput. Methods Appl. Mech. Eng.249/252, 185–197 (2012)

    Google Scholar 

  26. Y. Zhang, W. Wang, T.J.R. Hughes, Conformal solid T-spline construction from boundary T-spline representations. Comput. Mech.51(6), 1051–1059 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Commission projects TERRIFIC (Grant Agreement 284981), EXAMPLE (Grant Agreement 324340) and ITN INSIST (Grant Agreement 289361), and the Austrian Science Fund (FWF) project Geometry and Simulation (Project Number S 117). We thank Martin Schifko at Engineering Center Steyr and Stefan Boschert at Siemens Corporate Technology for some of the input data used in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pauley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pauley, M., Nguyen, DM., Mayer, D., Špeh, J., Weeger, O., Jüttler, B. (2015). The Isogeometric Segmentation Pipeline. In: Jüttler, B., Simeon, B. (eds) Isogeometric Analysis and Applications 2014. Lecture Notes in Computational Science and Engineering, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-23315-4_3

Download citation