Skip to main content

Domestication, Dispersion, Selection and Hybridization of Cultivated Plants

  • Chapter
Plant Breeding: Past, Present and Future
  • 2727 Accesses

Abstract

Plant breeding began when plants were brought into cultivation for human use, as early as 13,000 years ago in the Near East, and subsequently and independently in other parts of the world. Domestication, geographical dispersal to new environments and selection by farmers, resulted in numerous locally adapted landraces of cultivated plants. Examples of these processes are presented and discussed, as is the extensive dispersion and redistribution of crops which followed the discovery of the New World in 1492. The transfer of plant breeding from farmers to specialist breeders began during the seventeenth and eighteenth centuries and continued in the nineteenth century with the introduction of planned hybridizations, following progress since 1682 in understanding sexual reproduction in plants. The foundations for scientific breeding were laid with Mendel’s work on the laws of inheritance, Darwin’s work on the evolutionary significance of the mating system and increased understanding of the cellular basis of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaby R (2010) Integrating the processes in the evolutionary system of domestication. J Exp Bot 61:935–944. doi:10.1093/jxb/erp382

    Article  CAS  PubMed  Google Scholar 

  • Allaby M (2012) Oxford dictionary of plant sciences, 3rd edn. Oxford University Press, Oxford, 565p

    Google Scholar 

  • Ames M, Spooner DA (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257

    Article  CAS  PubMed  Google Scholar 

  • Anderson T (1855) Proceedings in the laboratory. Transactions of the Highland and Agricultural Society of Scotland for 1855 to 1857, pp 174–200

    Google Scholar 

  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Balter M (2007) Seeking agriculture’s ancient roots. Science 316:1830–1835

    Article  CAS  PubMed  Google Scholar 

  • Banga O (1957a) Origin of the European cultivated carrot. Euphytica 6:54–63

    Google Scholar 

  • Banga O (1957b) The development of the original European carrot material. Euphytica 6:64–76

    Google Scholar 

  • Barrett SCH (ed) (2008) Major evolutionary transitions in flowering plant reproduction. The University of Chicago Press, Chicago, 209p

    Google Scholar 

  • Bar-Yosef O (1998) The Natufian culture in the Levant, threshold to the origins of agriculture. Evol Anthropol 6:159–177

    Article  Google Scholar 

  • Bell A (2009) Peak water. Luath, Edinburgh, 207p

    Google Scholar 

  • Benson W (2012) Kingdom of plants. A journey through their evolution. Collins, London, 256p

    Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 173–219

    Chapter  Google Scholar 

  • Binglun Z (2009) Researches in heredity and breeding. In: Ancient China’s technology and science. Foreign Languages Press, Beijing, pp 281–291

    Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109:E788–E796. doi: 10.1073/pnas.1108973109

    Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109:E788–E796. doi: 10.1073/pnas.1108973109

    Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Zeuli PS, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313. doi: 10.1111/j.1469-8137.2012.04377.x

    Google Scholar 

  • Blackmore S (2012) Green Universe. Royal Botanic Garden Edinburgh/Papadakis, Winterbourne, 256 p

    Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, vol 7, Handbook of plant breeding. Springer, New York, pp 1–52

    Chapter  Google Scholar 

  • Brown R (1833) On the organs and mode of fecundation in Orchideae and Asclepiadeae. Trans Linn Soc London 16:685–745

    Article  Google Scholar 

  • Callaway DJ, Callaway MB (eds) (2000) Breeding ornamental plants. Timber, Portland, 323p

    Google Scholar 

  • Camadro EL, Erazzu LE, Maune JF, Bedogni MC (2012) A genetic approach to the species problem in wild potato. Plant Biol 14:543–554

    Article  CAS  PubMed  Google Scholar 

  • Carlson EA (2004) Mendel’s legacy: the origin of classical genetics. Cold Spring Harbor Laboratory Press, New York, 332p

    Google Scholar 

  • Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Roberts, Greenwood Village, 734p

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. The 150th Anniversary Landmark Edition: Bynum W (ed) Penguin Group, London, 516p

    Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication, vol 1. Digitally printed 2010, Cambridge University Press, Cambridge, 411p

    Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. Digitally printed 2009, Cambridge University Press, Cambridge, 482p

    Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. Digitally printed 2010, Cambridge University Press, Cambridge, 352p

    Google Scholar 

  • Despeghel JP, Guguin N (2012) Feeding the future; breeding advances in oilseed rape oils. In: Bedő Z, Láng L (eds) Plant breeding for future generations, Proceedings of the 19th EUCARPIA General Congress, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences Martonvásár, Hungary, pp 62–65

    Google Scholar 

  • Díez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Vegetables II, vol 2, Handbook of plant breeding. Springer, New York, pp 249–323

    Chapter  Google Scholar 

  • Dodds KS (1962) Classification of cultivated potatoes. In: Correll DS (ed) The potato and its wild relatives. Texas Research Foundation, Renner, pp 517–539

    Google Scholar 

  • Doebley J (2006) Unfallen grains: how ancient farmers turned weeds into crops. Science 312:1318–1319

    Article  PubMed  Google Scholar 

  • Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  • Ellis RT (1995) Tea. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 22–27

    Google Scholar 

  • Esquinas-Alcázar JT, Frison C, López F (2011) Introduction. In: Frison C, López F, Esquinas-Alcázar JT (eds) Plant genetic resources and food security. FAO, Biodiversity International and Earthscan, Abingdon, pp 1–23

    Google Scholar 

  • Fehr WR, Hadley HH (eds) (1980) Hybridization of crop plants. American Society of Agronomy and Crop Science Society of America, Madison, 765p

    Google Scholar 

  • Fernández-Martínez JM, Pérez-Vich B, Velasco L (2009) Sunflower. In: Vollmann J, Rajcan I (eds) Oil crops, vol 4, Handbook of plant breeding. Springer, New York, pp 155–232

    Chapter  Google Scholar 

  • Friedt W, Snowdon R (2009) Oilseed rape. In: Vollmann J, Rajcan I (eds) Oil crops, vol 4, Handbook of plant breeding. Springer, New York, pp 91–126

    Chapter  Google Scholar 

  • Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O, Tohme J, Ghesquière A, Lorieux M (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185:1425–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glendinning DR (1983) Potato introductions and breeding up to the early 20th century. New Phytol 94:479–505

    Article  Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York, 435p

    Google Scholar 

  • Guimarães EP (2012) Rice breeding. In: Carena MJ (ed) Cereals, vol 3, Handbook of Plant Breeding. Springer, New York, pp 99–126

    Google Scholar 

  • Hahlbrock K (2009) Feeding the planet: environmental protection through sustainable agriculture. Haus, London, 266p

    Google Scholar 

  • Hancock JF (2012) Plant evolution and the origin of crop species, 3rd edn. CABI, Wallingford, 245p

    Book  Google Scholar 

  • Hardon JJ (1995) Oil palm. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 395–398

    Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  CAS  PubMed  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity & genetic resources. Belhaven, London, 259p

    Google Scholar 

  • Hawkes JG, Francisco-Ortega J (1992) The potato in Spain during the late 16th century. Econ Bot 46:86–97

    Article  Google Scholar 

  • Hawkes JG, Francisco-Ortega J (1993) The early history of the potato in Europe. Euphytica 70:1–7

    Article  Google Scholar 

  • Heldt H-W, Piechulla B (2011) Plant biochemistry, 4th edn. Academic, London, 622p

    Google Scholar 

  • Hickey M, King C (2000) The Cambridge illustrated glossary of botanical terms. Cambridge University Press, Cambridge, 208p

    Google Scholar 

  • Hillman G, Hedges R, Moore A, Colledge S, Pettitt P (2001) New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. The Holocene 11:383–393

    Article  Google Scholar 

  • Huang P, Molina J, Flowers JM, Rubinstein S, Jackson SA, Purugganan MD, Schaal BA (2012a) Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view. Mol Ecol 21:4593–4604. doi:10.1111/j.1365-294X.2012.05625.x

    Article  PubMed  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012b) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  Google Scholar 

  • Humphreys M, Feuerstein U, Vandewalle M, Baert J (2010) Ryegrasses. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, vol 5, Handbook of plant breeding. Springer, New York, pp 211–260

    Chapter  Google Scholar 

  • Johns T, Alonso JG (1990) Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210

    Article  CAS  Google Scholar 

  • Kavanagh E (2006) How and when was wild wheat domesticated? Science 313:296–297

    Google Scholar 

  • Khachatourians GG, Sumner AK, Phillips PWB (2001) An Introduction to the history of canola and the scientific basis for innovation. In: Phillips PWB, Khachatourians GG (eds) The biotechnology revolution in global agriculture: innovation and investment in the canola sector. CAB International, Wallingford, pp 33–47

    Chapter  Google Scholar 

  • King J (2011) Reaching for the Sun. How plants work, 2nd edn. Cambridge University Press, Cambridge, 298p

    Google Scholar 

  • Kingsbury N (2009) Hybrid: the history & science of plant breeding. The University of Chicago Press, Chicago, 493p

    Book  Google Scholar 

  • Kloosterman B, Abelenda JA, Carretero Gomez MdM, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495(7440):246–250

    Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Article  CAS  PubMed  Google Scholar 

  • Love D (1992) Translator’s foreword of origin and geography of cultivated plants by N.I. Vavilov. Cambridge University Press, Cambridge

    Google Scholar 

  • Mamidi S, Rossi M, Moghaddam SM, Annam D, Lee R, Papa R, McClean PE (2013) Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110:267–276. doi:10.1038/hdy.2012.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon P (2013) Feeding frenzy. Profile Books, London, 314p

    Google Scholar 

  • Mendel G (1865) Experiments in plant hybridisation. English translation with introduction. (trans: Fisher RA), Oliver & Boyd, Edinburgh, 95p

    Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48. doi:10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Moffat A, Wilson JF (2011) The Scots: a genetic journey. Birlinn, Edinburgh, 256p

    Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci 108:8351–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore R, Clark WD, Vodopich DS (1998) Botany, 2nd edn. WCB/McGraw-Hill, New York, 919p

    Google Scholar 

  • Moseley ME (2001) The Incas and their ancestors: the archaeology of Peru, 2nd edn. Thames and Hudson, London

    Google Scholar 

  • Murphy DJ (2007) People, plants & genes: the story of crops and humanity. Oxford University Press, Oxford, 401p

    Book  Google Scholar 

  • Musgrave T, Gardner C, Musgrave W (1998) The plant hunters. Orion, London, 224p

    Google Scholar 

  • Ortiz R, Huaman Z (1994) Inheritance of morphological and tuber characteristics. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 263–283

    Google Scholar 

  • Parry B (2004) Trading the genome. Columbia University Press, New York, 319p

    Google Scholar 

  • Pennisi E (2001) Linnaeus’s last stand? Science 291:2304–2307

    Article  CAS  PubMed  Google Scholar 

  • Peteet D (2000) Sensitivity and rapidity of vegetational response to abrupt climate change. Proc Natl Acad Sci 97:1359–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno DR (2001) On maize and the sunflower. Science 292:2260–2261

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR, Weiss E, Holst I, Nadel D (2004) Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670–673

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci 106:5019–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Reheul D, De Cauwer B, Cougnon M (2010) The role of forage crops in multifunctional agriculture. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, vol 5, Handbook of plant breeding. Springer, New York, pp 1–12

    Chapter  Google Scholar 

  • Riddet WM (1925) The turnip crop. In: Paterson WGR (ed) Farm crops, vol II, Root crops. Gresham, London, pp 69–118

    Google Scholar 

  • Rios D, Ghislain M, Rodriguez F, Spooner DM (2007) What is the origin of the European potato? Evidence from Canary Island landraces. Crop Sci 47:1271–1280

    Article  CAS  Google Scholar 

  • Robb W, Wishart R (1915) The improvement of the feeding value of swedes and turnips. University of St Andrews, Agricultural Department. University Press, St Andrews, pp 1–12

    Google Scholar 

  • Rodríguez GR, Muños S, Anderson C, Sim S-C, Michel A, Causse M, McSpadden Gardener BB, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotherham ID (2013) The lost fens: England’s greatest ecological disaster. The History Press, Stroud, 207p

    Google Scholar 

  • Simmonds NW (1995a) Potatoes. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 466–471

    Google Scholar 

  • Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C, Günther T, Hall P, Tambets K, Parik J, Sjögren K-G, Apel J, Willerslev E, Storå J, Götherström A, Jakobsson M (2014) Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science. doi:10.1126/science.1253448

    Google Scholar 

  • Smartt J, Simmonds NW (1995) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, 531p

    Google Scholar 

  • Soh AC, Wong CK, Ho YW, Choong CW (2009) Oil Palm. In: Vollmann J, Rajcan I (eds) Oil crops, vol 4, Handbook of plant breeding. Springer, New York, pp 333–367

    Chapter  Google Scholar 

  • Sokal RR, Oden NL, Wilson C (1991) Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nature 351:143–145

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM, Hetterscheid WLA, van den Berg RG, Brandenburg WA (2003) Plant nomenclature and taxonomy. Hortic Rev 28:1–60

    Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–248

    Article  Google Scholar 

  • Tallury SP, Goodman MM (2001) The state of the use of maize genetic diversity in the USA and Sub-Saharan Africa. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 159–179

    Chapter  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Gonzalez JJS, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci 108:1088–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan DA, Lu B-R, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408

    Article  CAS  Google Scholar 

  • Vavilov NI (1940) The theory of the origin of cultivated plants after Darwin. Nauka [Science] 2:55–75

    Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2007) Rice breeding for sustainable production. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 141–191

    Chapter  Google Scholar 

  • Visa S, Cao C, Gardener BM, van der Knaap E (2014) Modeling of tomato fruits into nine shape categories using elliptic Fourier shape modeling and Bayesian classification of contour morphometric data. Euphytica 200:429–439. doi:10.1007/s10681-014-1179-0

    Article  Google Scholar 

  • Wang C-H, Zheng X-M, Xu Q, Yuan X-P, Huang L, Zhou H-F, Wei X-H, Ge S (2014a) Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity 112:489–496. doi:10.1038/hdy.2013.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O (2004) The broad spectrum revisited: evidence from plant remains. Proc Natl Acad Sci 101:9551–9555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehouse HLK (1973) Towards an understanding of the mechanism of heredity, 3rd edn. Edward Arnold, London, 445p

    Google Scholar 

  • Willis KJ, McElwain JC (2014) The evolution of plants, 2nd edn. Oxford University Press, Oxford, 398p

    Google Scholar 

  • Zhu BF, Si L, Wang Z, Zhou Y, Zhu J, Shangguan Y, Lu D, Fan D, Li C, Lin H, Qian Q, Sang T, Zhou B, Minobe Y, Han B (2011) Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155:1301–1311. doi:10.1104/pp. 110.168500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Domestication, Dispersion, Selection and Hybridization of Cultivated Plants. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_1

Download citation

Publish with us

Policies and ethics