European Workshop on Performance Engineering

EPEW 2015: Computer Performance Engineering pp 258-272

An AnyLogic Simulation Model for Power and Performance Analysis of Data Centres

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9272)

Abstract

In this paper we propose a simulation framework that allows for the analysis of power and performance trade-offs for data centres that save energy via power management. The models are cooperating discrete-event and agent-based models, which enable a variety of data centre configurations, including various infrastructural choices, workload models, (heterogeneous) servers and power management strategies. The capabilities of our modelling and simulation approach is shown with an example of a 200-server cluster. A validation that compares our results, for a restricted model with a previously published numerical model is also provided.

Keywords

Data centres Simulation Discrete-event models Agent-based models Power management Performance analysis Power-performance trade-off Cascading effect Transient analysis Steady-state analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AnyLogic: AnyLogic: Multimethod Simulation Software (2000). http://www.anylogic.com/
  2. 2.
    Arregoces, M., Portolani, M.: Data Center Fundamentals. Cisco Press, Indianapolis (2003)Google Scholar
  3. 3.
    Barroso, L.A., Hölzle, U.: The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer Architecture 8(3), 1–154 (2009). http://www.valleytalk.org/wp-content/uploads/2013/10/WSC_2.4_Final-Draft.pdf
  4. 4.
    Birke, R., Chen, L.Y., Smirni, E.: Data Centers in the Wild: A Large Performance Study. Tech. rep., IBM Research (2012). http://domino.research.ibm.com/library/cyberdig.nsf/papers/0C306B31CF0D3861852579E40045F17F/File/rz3820.pdf
  5. 5.
    Bruneo, D., Lhoas, A., Longo, F., Puliafito, A.: Analytical Evaluation of Resource Allocation Policies in Green IaaS Clouds. In: Proc. of 3rd Int. Conf. on Cloud and Green Computing, pp. 84–91. IEEE Computer Society Washington, DC (2013)Google Scholar
  6. 6.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. Software: Practice and Experience 41(1), 23–50 (2011)Google Scholar
  7. 7.
    Datacenter Dynamics Intelligence: Global Data Center Power 2013. Tech. rep., Datacenter Dynamics (2013). http://www.dcd-intelligence.com/Products-Services/Open-Research/Global-Data-Center-Power-2013
  8. 8.
    Emerson Network Power: Energy Logic: Reducing Data Center Energy Consumption by Creating Savings that Cascade Across Systems. White Paper of Emerson Electric Co (2009)Google Scholar
  9. 9.
    Gandhi, A.: Dynamic Server Provisioning for Data Center Power Management. Phd thesis, Carnegie Mellon University (2013). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.376.4361
  10. 10.
    Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact Analysis of the M/M/k/setup Class of Markov Chains via Recursive Renewal Reward. In: Proc. of the ACM SIGMETRICS Int. Conf. on Measurement and Modeling of Computer Systems, vol. 41, pp. 153–166. ACM, New York (2013)Google Scholar
  11. 11.
    Ghosh, R., Naik, V.K., Trivedi, K.S.: Power-Performance Trade-offs in IaaS Cloud: A Scalable Analytic Approach. In: Proc. of 41st Int. Conf. on Dependable Systems and Networks Workshops, pp. 152–157. IEEE Computer Society Washington, DC (2011). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958802
  12. 12.
    Katoen, J.P., Noll, T., Santen, T., Seifert, D., Wu, H.: Performance Analysis of Computing Servers using Stochastic Petri Nets and Markov Automata. Technical report, RWTH Aachen University (2013)Google Scholar
  13. 13.
    von Kistowski, J., Block, H., Beckett, J., Lange, K.D., Arnold, J.A., Kounev, S.: Analysis of the Influences on Server Power Consumption and Energy Efficiency for CPU-Intensive Workloads. In: Proc. of the 6th ACM/SPEC International Conference on Performance Engineering, pp. 223–234. ACM Press, New York (January 2015). http://dl.acm.org/citation.cfm?id=2668930.2688057
  14. 14.
    Kuhn, P.J., Mashaly, M.: Performance of Self-Adapting Power-Saving Algorithms for ICT Systems. In: Int. Symposium IFIP/IEEE on Integrated Network Management, pp. 720–723. IEEE (2013)Google Scholar
  15. 15.
    Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill (2015)Google Scholar
  16. 16.
    Postema, B.F., Haverkort, B.R.: Stochastic Petri Net Models for the Analysis of Trade-Offs in Data Centres with Power Management. In: Klingert, S., Chinnici, M., Rey Porto, M. (eds.) E2DC 2014. LNCS, vol. 8945, pp. 52–67. Springer, Heidelberg (2015) Google Scholar
  17. 17.
    Stefanek, A., Hayden, R.A., Bradley, J.T.: Fluid Analysis of Energy Consumption using Rewards in Massively Parallel Markov Models. In: Proc. of the 2nd ACM/SPEC International Conference on Performance Engineering (ICPE), pp. 121–132 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre for Telematics and Information TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations