Online Action Language \(o\mathcal {BC}\)+

  • Joseph Babb
  • Joohyung LeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


We present an online action language called \(o\mathcal{BC}\)+, which extends action language \(\mathcal{BC}\)+ to handle external events arriving online. This is done by first extending the concept of online answer set solving to arbitrary propositional formulas, and then defining the semantics of \(o\mathcal{BC}\)+ based on this extension, similar to the way the offline \(\mathcal{BC}\)+ is defined. The design of \(o\mathcal{BC}\)+ ensures that any action description in \(o\mathcal{BC}\)+ satisfies the syntactic conditions required for the correct computation of online answer set solving, thereby alleviates the user’s burden for checking the sophisticated conditions.



We are grateful to Michael Bartholomew, Yi Wang, and the anonymous referees for their useful comments on the draft. This work was partially supported by the National Science Foundation under Grant IIS-1319794 and South Korea IT R&D program MKE/KIAT 2010-TD-300404-001.


  1. 1.
    Valle, E.D., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! Reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)CrossRefGoogle Scholar
  2. 2.
    Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 54–66. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Babb, J., Lee, J.: Action language \(\cal BC\)+: preliminary report. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2015)Google Scholar
  5. 5.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1–2), 49–104 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Lee, J., Lifschitz, V., Yang, F.: Action language \(\cal BC\): preliminary report. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2013)Google Scholar
  7. 7.
    Babb, J., Lee, J.: Module theorem for the general theory of stable models. TPLP 12(4–5), 719–735 (2012)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Bartholomew, M., Lee, J.: Stable models of multi-valued formulas: partial vs. total functions. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 583–586 (2014)Google Scholar
  10. 10.
    Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 797–803. AAAI Press (2009)Google Scholar
  11. 11.
    Cerexhe, T., Gebser, M., Thielscher, M.: Online agent logic programming with oClingo. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 945–957. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations