A Framework for Goal-Directed Query Evaluation with Negation

  • Stefan Brass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


This paper contains a proposal how goal-directed query evaluation for the well-founded semantics WFS (and other negation semantics) can be done based on elementary program transformations. It also gives a new look at the author’s SLDMagic method, which has several advantages over the standard magic set method (e.g., for tail recursions).


  1. 1.
    Beeri, C., Ramakrishnan, R.: On the power of magic. In: Proceedings of Sixth ACM Symposium on Principles of Database Systems (PODS 1987), pp. 269–284. ACM (1987)Google Scholar
  2. 2.
    Bonatti, P.A., Pontelli, E., Son, T.C.: Credulous resolution for answer set programming. In: Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI 2008), vol. 1, pp. 418–423. AAAI Press (2008)Google Scholar
  3. 3.
    Brass, S.: SLDMagic — the real magic (with applications to web queries). In: Lloyd, W., et al. (eds.) CL 2000. LNCS, vol. 1861, pp. 1063–1077. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Brass, S., Dix, J.: Characterizations of the stable semantics by partial evaluation. In: Marek, V.W., Nerode, A., Truszczyński, M. (eds.) LPNMR 1995. LNCS (LNAI), vol. 928, pp. 85–98. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Brass, S., Dix, J.: A general approach to bottom-up computation of disjunctive semantics. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) Nonmonotonic Extensions of Logic Programming. LNCS (LNAI), vol. 927, pp. 127–155. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Brass, S., Dix, J., Freitag, B., Zukowski, U.: Transformation-based bottom-up computation of the well-founded model. Theor. Pract. Logic Program. 1(5), 497–538 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bry, F.: Logic programming as constructivism: a formalization and its application to databases. In: Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1989), pp. 34–50 (1989)Google Scholar
  8. 8.
    Chen, W., Warren, D.S.: A goal-oriented approach to computing the well-founded semantics. J. Logic Program. 17, 279–300 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dix, J., Müller, M.: Partial evaluation and relevance for approximations of the stable semantics. In: Raś, Z.W., Zemankova, M. (eds.) MIS 1994. LNCS (LNAI), vol. 869, pp. 511–520. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  10. 10.
    Dung, P.M., Kanchansut, K.: A fixpoint approach to declarative semantics of logic programs. In: Proceedings of North American Conference on Logic Programming (NACLP 1989), pp. 604–625 (1989)Google Scholar
  11. 11.
    Marple, K., Gupta, G.: Galliwasp: a goal-directed answer set solver. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 122–136. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Sakama, C., Seki, H.: Partial deduction of disjunctive logic programs: a declarative approach. In: Fribourg, L., Seki, H. (eds.) LOPSTR 1994 and META 1994. LNCS, vol. 883, pp. 170–182. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Swift, T.: Tabling for non-monotonic programming. Ann. Math. Artif. Intell. 25, 201–240 (1999)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für InformatikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations