International Conference on Logic Programming and Nonmonotonic Reasoning

LPNMR 2015: Logic Programming and Nonmonotonic Reasoning pp 143-150 | Cite as

Answer Set Programming Modulo Acyclicity

  • Jori Bomanson
  • Martin Gebser
  • Tomi Janhunen
  • Benjamin Kaufmann
  • Torsten Schaub
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)

Abstract

Acyclicity constraints are prevalent in knowledge representation and, in particular, applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related with recursive structures. The implementation, obtained as an extension to the state-of-the-art answer set solver clasp, provides a unique combination of traditional unfounded set checking with acyclicity propagation.

References

  1. 1.
    Cussens, J.: Bayesian network learning with cutting planes. In: Proceeding UAI 2011, pp. 153–160. AUAI Press (2011)Google Scholar
  2. 2.
    Corander, J., Janhunen, T., Rintanen, J., Nyman, H., Pensar, J.: Learning chordal Markov networks by constraint satisfaction. In: Proceeding NIPS 2013, NIPS Foundation, pp. 1349–1357 (2013)Google Scholar
  3. 3.
    Erdem, E., Lifschitz, V., Wong, M.D.F.: Wire routing and satisfiability planning. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 822–836. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)Google Scholar
  5. 5.
    Gebser, M., Janhunen, T., Rintanen, J.: SAT modulo graphs: Acyclicity. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 137–151. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT modulo monotonic theories. In: Proceeding AAAI 2015, pp. 3702–3709. AAAI Press (2015)Google Scholar
  7. 7.
    Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo Acyclicity. In: Proceeding ECAI 2014, pp. 351–356. IOS Press (2014)Google Scholar
  8. 8.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003) MATHCrossRefGoogle Scholar
  9. 9.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187–188, 52–89 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MATHGoogle Scholar
  11. 11.
    Gebser, M., Janhunen, T., Rintanen, J.: ASP encodings of Acyclicity properties. In: Proceeding KR 2014. AAAI Press (2014)Google Scholar
  12. 12.
    Fages, F.: Consistency of Clark’s completion and the existence of stable models. J. Methods Logic Comput. Sci. 1, 51–60 (1994)Google Scholar
  13. 13.
    Erdem, E., Lifschitz, V.: Tight logic programs. Theor. Pract. Logic Program. 3(4–5), 499–518 (2003)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  15. 15.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Proceeding KR 2012, pp. 32–42. AAAI Press (2012)Google Scholar
  16. 16.
    Lee, J., Meng, Y.: Answer set programming modulo theories and reasoning about continuous changes. In: Proceeding IJCAI 2013, pp. 990–996. IJCAI/AAAI Press (2013)Google Scholar
  17. 17.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jori Bomanson
    • 1
  • Martin Gebser
    • 1
    • 2
  • Tomi Janhunen
    • 1
  • Benjamin Kaufmann
    • 2
  • Torsten Schaub
    • 2
    • 3
  1. 1.Aalto University, HIITEspooFinland
  2. 2.University of PotsdamPotsdamGermany
  3. 3.INRIA RennesRennesFrance

Personalised recommendations