Stable Models for Temporal Theories

— Invited Talk —
  • Pedro Cabalar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


This work makes an overview on an hybrid formalism that combines the syntax of Linear-time Temporal Logic (LTL) with a non-monotonic selection of models based on Equilibrium Logic. The resulting approach, called Temporal Equilibrium Logic, extends the concept of a stable model for any arbitrary modal temporal theory, constituting a suitable formal framework for the specification and verification of dynamic scenarios in Answer Set Programming (ASP). We will recall the basic definitions of this logic and explain their effects on some simple examples. After that, we will proceed to summarize the advances made so far, both in the fundamental realm and in the construction of reasoning tools. Finally, we will explain some open topics, many of them currently under study, and foresee potential challenges for future research.



This research is part of a long term project developed during the last eight years in the KR group from the University of Corunna and, especially, in close cooperation with Felicidad Aguado, Martín Diéguez, Gilberto Pérez and Concepción Vidal together with the regular collaborators David Pearce and Luis Fariñas. I am also especially thankful to Stèphane Demri, Philippe Balbiani, Andreas Herzig, Laura Bozzelli, Manuel Ojeda, Agustín Valverde, Stefania Costantini, Michael Fisher, Mirosław Truszczyński, Vladimir Lifschitz and Torsten Schaub for their useful discussions and collaboration at different moments on specific topics of this work.


  1. 1.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, pp. 463–502. Edinburgh University Press, Edinburgh (1969)Google Scholar
  2. 2.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4, 67–95 (1986)CrossRefGoogle Scholar
  3. 3.
    McCarthy, J.: Circumscription: a form of non-monotonic reasoning. Artif. Intell. 13, 27–39 (1980)zbMATHCrossRefGoogle Scholar
  4. 4.
    Mccarthy, J.: Modality, si! modal logic, no!. Stud. Logica. 59(1), 29–32 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Castilho, M.A., Gasquet, O., Herzig, A.: Formalizing action and change in modal logic I: the frame problem. J. Logic Comput. 9(5), 701–735 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Giordano, L., Martelli, A., Schwind, C.: Ramification and causality in a modal action logic. J. Logic Comput. 10(5), 625–662 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Baral, C., Zhao, J.: Nonmonotonic temporal logics for goal specification. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 236–242 (2007)Google Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J. Logic Program. 17, 301–321 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Action languages. Linköping Electron. Art. Comput. Inf. Sci. 3(16) (1998).
  10. 10.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm, pp. 169–181. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system for finite model computation. AI Commun. 24(2), 195–212 (2011)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)Google Scholar
  14. 14.
    Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), Seattle, Washington, pp. 1070–1080 (1988)Google Scholar
  16. 16.
    Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)Google Scholar
  18. 18.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Proceedings of Non-Monotonic Extensions of Logic Programming (NMELP 1996), Bad Honnef, Germany, pp. 57–70 (1996)Google Scholar
  19. 19.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1930)Google Scholar
  20. 20.
    Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-classical Logics 23(1–2), 2–24 (2013)CrossRefGoogle Scholar
  21. 21.
    Balbiani, P., Diéguez, M.: An axiomatisation of the logic of temporal here-and-there (2015) (unpublished draft)Google Scholar
  22. 22.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11 (1962)Google Scholar
  23. 23.
    Cabalar, P., Demri, S.: Automata-based computation of temporal equilibrium models. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 57–72. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  24. 24.
    Cabalar, P., Diéguez, M., Vidal, C.: An infinitary encoding of temporal equilibrium logic. In: Proceedings of the 31st International Conference on Logic Programming (ICLP 2015) (2015)Google Scholar
  25. 25.
    Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic. In: Working Notes of Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2014) (2014)Google Scholar
  26. 26.
    Pearce, D.J., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. Comput. Logic 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna, Austria (2014)Google Scholar
  29. 29.
    Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theor. Pract. Logic Program. 7(6), 745–759 (2007)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Fisher, M.: A resolution method for temporal logic. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 99–104. Morgan Kaufmann Publishers Inc. (1991)Google Scholar
  31. 31.
    Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  32. 32.
    Bozzelli, L., Pearce, D.: On the complexity of temporal equilibrium logic. In: Proceedings of the 30th Annual ACM/IEEE Symposium of Logic in Computer Science (LICS 2015), Kyoto, Japan (2015, to appear)Google Scholar
  33. 33.
    Cabalar, P., Diéguez, M.: STeLP – a tool for temporal answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  34. 34.
    Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International Conference on Logic programming (ICLP 1994), pp. 23–37 (1994)Google Scholar
  35. 35.
    Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 80–92. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  36. 36.
    Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47, 79–101 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Paving the way for temporal grounding. In: Proc. of the 28th International Conference on Logic Programming (ICLP 2012) (2012)Google Scholar
  38. 38.
    Cabalar, P., Diéguez, M.: Temporal stable models are LTL-representable. In: Proceedings of the 7th International Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2014) (2014)Google Scholar
  39. 39.
    Aguado, F., Pérez, G., Vidal, C.: Integrating temporal extensions of answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 23–35. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  40. 40.
    Bertino, E., Mileo, A., Provetti, A.: PDL with preferences. In: 6th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2005), pp. 213–222 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CorunnaA CoruñaSpain

Personalised recommendations