Abstract
Cognitive function in humans declines in essentially all domains starting in the late 50s, and neurodegeneration and dementia seem to be inevitable in all but a few of those who survive to very old age. While age-related cognitive dysfunction and Alzheimer’s disease in humans are clearly distinct entities and seem to affect different brain regions, both show the telltale molecular and cellular changes that characterize tissue aging including abnormal proteostasis, loss in stem cell activity, and inflammation. Adding to the challenge of differentiating the two, Alzheimer’s disease is thought to begin up to 20 years before it manifests clinically and, accordingly, there is significant overlap between brain aging and the disease based on structural and functional brain imaging. This chapter will highlight commonalities and emphasize divergences between “normal” brain aging and Alzheimer’s disease and discuss novel approaches to understand the link between the two.
Keywords
- Alzheimer’s
- Aging
- Proteostasis
- Epigenetic
- Inflammation
- Geroscience
This is a preview of subscription content, access via your institution.
Buying options
References
Yankner BA, Lu T, Loerch P (2008) The aging brain. Ann Rev Pathol Mech Dis 3:41–66. doi:10.1146/annurev.pathmechdis.2.010506.092044
Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535. doi:10.1038/nature08983
McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. doi:10.1016/j.jalz.2011.03.005
Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. doi:10.1016/j.jalz.2011.03.008
Vos SJ, Verhey F, Frolich L et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain. doi:10.1093/brain/awv029
Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222. doi:10.1016/j.cell.2012.02.040
Jack CR Jr, Holtzman DM (2013) Biomarker modeling of Alzheimer’s disease. Neuron 80:1347–1358. doi:10.1016/j.neuron.2013.12.003
Cohen AD, Klunk WE (2014) Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 72:117–122. doi:10.1016/j.nbd.2014.05.001
Okamura N, Harada R, Furumoto S et al (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14:500–507. doi:10.1007/s11910-014-0500-6
Deary IJ, Corley J, Gow AJ et al (2009) Age-associated cognitive decline. Br Med Bull 92:135–152. doi:10.1093/bmb/ldp033
Chadick JZ, Zanto TP, Gazzaley A (2014) Structural and functional differences in medial prefrontal cortex underlie distractibility and suppression deficits in ageing. Nat Commun 5:4223. doi:10.1038/ncomms5223
Hayden KM, Reed BR, Manly JJ et al (2011) Cognitive decline in the elderly: an analysis of population heterogeneity. Age Ageing 40:684–689. doi:10.1093/ageing/afr101
Tang YP, Shimizu E, Dube GR et al (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69. doi:10.1038/43432
Cui Z, Feng R, Jacobs S et al (2013) Increased NR2A: NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 3:1036. doi:10.1038/srep01036
Chetelat G, La Joie R, Villain N et al (2013) Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. NeuroImage Clin 2:356–365. doi:10.1016/j.nicl.2013.02.006
Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. NBA 18:351–357. doi:10.1016/S0197-4580(97)00056-0
Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. doi:10.1097/NEN.0b013e318232a379
Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828. doi:10.1016/S1474-4422(11)70072-2
McKee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66. doi:10.1016/B978-0-444-52892-6.00004-0
Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43:615–621. doi:10.1016/j.arcmed.2012.09.008
Wilson RS, Boyle PA, Yu L et al (2013) Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology 81:314–321. doi:10.1212/WNL.0b013e31829c5e8a
Michaelson DM (2014) APOE epsilon4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 10:861–868. doi:10.1016/j.jalz.2014.06.015
Altmann A, Tian L, Henderson VW et al (2014) Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 75:563–573. doi:10.1002/ana.24135
Yaffe K, Cauley J, Sands L, Browner W (1997) Apolipoprotein E phenotype and cognitive decline in a prospective study of elderly community women. Arch Neurol 54:1110–1114. doi:10.1001/archneur.1997.00550210044011
De Jager PL, Shulman JM, Chibnik LB et al (2012) A genome-wide scan for common variants affecting the rate of age-related cognitive decline. NBA 33:1017.e1–15. doi:10.1016/j.neurobiolaging.2011.09.033
Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132:1323–1338. doi:10.1007/s00439-013-1342-z
Dubal DB, Yokoyama JS, Zhu L et al (2014) Life extension factor klotho enhances cognition. Cell Reports 7(4):1065–1076. doi:10.1016/j.celrep.2014.03.076
Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci 105:13987–13992. doi:10.1073/pnas.0801030105
Fjell AM, McEvoy L, Holland D et al (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40. doi:10.1016/j.pneurobio.2014.02.004
Fjell AM, Westlye LT, Grydeland H et al (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24:919–934. doi:10.1093/cercor/bhs379
Fraser MA, Shaw ME, Cherbuin N (2015) A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. Neuroimage. doi:10.1016/j.neuroimage.2015.03.035
Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi:10.1007/s00401-006-0127-z
Jack CRJ, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188
Kerchner GA, Hess CP, Hammond-Rosenbluth KE et al (2010) Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75:1381–1387
Chhatwal JP, Sperling RA (2012) Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 31:S155–S167. doi:10.3233/JAD-2012-120730
Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624–1635. doi:10.1016/j.neuropsychologia.2007.11.030
Palop JJ, Mucke L (2010) Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. doi:10.1038/nn.2583
Sanchez PE, Zhu L, Verret L et al (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci 109:E2895–E2903. doi:10.1073/pnas.1121081109
Vossel KA, Beagle AJ, Rabinovici GD et al (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158–1166. doi:10.1001/jamaneurol.2013.136
Bakker A, Krauss GL, Albert MS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. doi:10.1016/j.neuron.2012.03.023
Apostolova LG, Mosconi L, Thompson PM et al (2010) Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging 31:1077–1088. doi:10.1016/j.neurobiolaging.2008.08.008
La Joie R, Perrotin A, La Sayette de V et al (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162. doi:10.1016/j.nicl.2013.08.007
Yassa MA, Stark SM, Bakker A et al (2010) High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage 51:1242–1252. doi:10.1016/j.neuroimage.2010.03.040
Yassa MA, Lacy JW, Stark SM et al (2011) Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21:968–979. doi:10.1002/hipo.20808
Small SA, Schobel SA, Buxton RB et al (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci. doi:10.1038/nrn3085
Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642. doi:10.1073/pnas.0308627101
Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 24:49–62. doi:10.1007/s11065-014-9249-6
López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. doi:10.1016/j.cell.2013.05.039
Pan L, Penney J, Tsai L-H (2014) Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J Mol Biol 426:3376–3388. doi:10.1016/j.jmb.2014.08.001
Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer’s disease. Brain Res 849:67–77
Madabhushi R, Pan L, Tsai L-H (2014) DNA damage and its links to neurodegeneration. Neuron 83:266–282. doi:10.1016/j.neuron.2014.06.034
Lu T, Pan Y, Kao S-Y et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. doi:10.1038/nature02661
Suberbielle E, Sanchez PE, Kravitz AV et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621. doi:10.1038/nn.3356
Ferron SR, Marques-Torrejon MA, Mira H et al (2009) Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J Neurosci 29:14394–14407. doi:10.1523/JNEUROSCI.3836-09.2009
Wolf SA, Melnik A, Kempermann G (2011) Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 25:971–980. doi:10.1016/j.bbi.2010.10.014
Ferron S (2004) Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131:4059–4070. doi:10.1242/dev.01215
Eitan E, Hutchison ER, Mattson MP (2014) Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci 37:256–263. doi:10.1016/j.tins.2014.02.010
Panossian LA, Porter VR, Valenzuela HF et al (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. NBA 24:77–84
Roberts RO, Boardman LA, Cha RH et al (2014) Short and long telomeres increase risk of amnestic mild cognitive impairment. Mech Ageing Dev 141–142:64–69. doi:10.1016/j.mad.2014.10.002
Jacobs EG, Epel ES, Lin J et al (2014) Relationship between leukocyte telomere length, telomerase activity, and hippocampal volume in early aging. JAMA Neurol 71:921–923. doi:10.1001/jamaneurol.2014.870
Rolyan H, Scheffold A, Heinrich A et al (2011) Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain 134:2044–2056. doi:10.1093/brain/awr133
Flanary BE, Streit WJ (2004) Progressive teromere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45(1):75–88. PMID 14648548
Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604. doi:10.1016/j.bcp.2014.01.008
Spilsbury A, Miwa S, Attems J, Saretzki G (2015) The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J Neurosci 35:1659–1674. doi:10.1523/JNEUROSCI.2925-14.2015
Kosik KS, Rapp PR, Raz N et al (2012) Mechanisms of age-related cognitive change and targets for intervention: epigenetics. J Gerontol A Biol Sci Med Sci 67:741–746. doi:10.1093/gerona/gls110
Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506. doi:10.1016/j.conb.2005.08.015
Lu T, Aron L, Zullo J et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507(7493):448–454. doi:10.1038/nature13163
Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756. doi:10.1126/science.1186088
Pavlopoulos E, Jones S, Kosmidis S et al (2013) Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med 5:200ra115. doi:10.1126/scitranslmed.3006373
Hernandez DG, Nalls MA, Gibbs JR et al (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20:1164–1172. doi:10.1093/hmg/ddq561
Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17:1164–1170. doi:10.1038/nn.3782
De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163. doi:10.1038/nn.3786
Lord J, Cruchaga C (2014) The epigenetic landscape of Alzheimer’s disease. Nat Neurosci 17:1138–1140. doi:10.1038/nn.3792
Yu L, Chibnik LB, Srivastava GP et al (2015) Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1With pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24. doi:10.1001/jamaneurol.2014.3049
Gjoneska E, Pfenning AR, Mathys H et al (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369. doi:10.1038/nature14252
Satoh J-I, Asahina N, Kitano S, Kino Y (2014) A comprehensive profile of ChIP-Seq-Based PU.1/Spi1 target genes in microglia. GRSB 8:127–13. doi:10.4137/GRSB.S19711
Bennett DA, Yu L, Yang J et al (2015) Epigenomics of Alzheimer’s disease. Transl Res 165:200–220. doi:10.1016/j.trsl.2014.05.006
Zhang K, Schrag M, Crofton A et al (2012) Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 12:1261–1268. doi:10.1002/pmic.201200010
Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179. doi:10.1038/sj.emboj.7601758
Dobbin MM, Madabhushi R, Pan L et al (2013) SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16:1008–1015. doi:10.1038/nn.3460
Huang PS, Son JH, Abbott LC, Winzer-Serhan UH (2011) Regulated expression of neuronal SIRT1 and related genes by aging and neuronal β2-containing nicotinic cholinergic receptors. Neuroscience 196:189–202. doi:10.1016/j.neuroscience.2011.09.007
Cho SH, Chen JA, Sayed F et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1. J Neurosci 35:807–818. doi:10.1523/JNEUROSCI.2939-14.2015
Gapp K, Woldemichael BT, Bohacek J, Mansuy IM (2014) Reviewepigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 264:99–111. doi:10.1016/j.neuroscience.2012.11.040
Penner MR, Roth TL, Barnes CA, Sweatt JD (2010) An epigenetic hypothesis of aging-related cognitive dysfunction. Front Aging Neurosci. doi:10.3389/fnagi.2010.00009
Eckert A, Schmitt K, Götz J (2011) Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 3:15. doi:10.1186/alzrt74
Swerdlow RH (2011) Brain aging, Alzheimer’s disease, and mitochondria. BBA Mol Basis Dis 1812:1630–1639. doi:10.1016/j.bbadis.2011.08.012
Santos RX, Correia SC, Zhu X et al (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 18:2444–2457. doi:10.1089/ars.2012.5039
Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645
Mecocci P, MacGarvey U, Kaufman AE et al (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616. doi:10.1002/ana.410340416
Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751. doi:10.1002/ana.410360510
Lin MT, Simon DK, Ahn CH et al (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11:133–145
Navarro A, Boveris A (2006) The mitochondrial energy transduction system and the aging process. AJP Cell Physiol 292:C670–C686. doi:10.1152/ajpcell.00213.2006
Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3:a004457. doi:10.1101/cshperspect.a004457
Bateman RJ, Munsell LY, Morris JC et al (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861. doi:10.1038/nm1438
Krabbe G, Halle A, Matyash V et al (2013) Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8:e60921. doi:10.1371/journal.pone.0060921.s005
Wyss-Coray T, Loike JD, Brionne TC et al (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457. doi:10.1038/nm838
Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid -peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2:a011452. doi:10.1101/cshperspect.a011452
Saido T, Leissring MA (2012) Proteolytic degradation of amyloid -protein. Cold Spring Harb Perspect Med 2:a006379. doi:10.1101/cshperspect.a006379
LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872. doi:10.1038/nrn960
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259
Sultana R, Boyd-Kimball D, Poon HF et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576. doi:10.1016/j.neurobiolaging.2005.09.021
Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714. doi:10.1093/hmg/ddh083
Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med 236:268–276. doi:10.1258/ebm.2010.010327
Manavalan A, Mishra M, Feng L (2013) Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45:e39–17. doi:10.1038/emm.2013.76
Almeida CG (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288. doi:10.1523/JNEUROSCI.5078-05.2006
Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658. doi:10.1172/JCI29715
O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653. doi:10.1016/j.exger.2013.02.025
Caccamo A, Magrì A, Medina DX et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380. doi:10.1111/acel.12057
Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979–8. doi:10.1371/journal.pone.0009979
Mrak R, Griffin WS, Graham DI (1997) Agin-associated changes in human brain. J Neuropathol Exp Neurol 56:1269–1275
Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002. doi:10.1046/j.1432-1033.2002.02869.x
Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 25:1161–1172
Nixon RA, Wegiel J, Kumar A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122
Pickford F, Masliah E, Britschgi M et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199. doi:10.1172/JCI33585
Nilsson P, Loganathan K, Sekiguchi M et al (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5:61–69. doi:10.1016/j.celrep.2013.08.042
Ash PEA, Vanderweyde TE, Youmans KL et al (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58. doi:10.1016/j.brainres.2014.05.052
Castellani RJ, Gupta Y, Sheng B et al (2011) A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: parallels to stress granules. Lab Invest 91:1777–1786. doi:10.1038/labinvest.2011.149
Vanderweyde T, Yu H, Varnum M et al (2012) Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci 32:8270–8283. doi:10.1523/JNEUROSCI.1592-12.2012
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335
van Wijngaarden P, Franklin RJM (2013) Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development 140:2562–2575. doi:10.1242/dev.092262
Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. doi:10.1038/3305
Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. doi:10.1016/j.cell.2013.05.002
Göritz C, Frisén J (2012) Neural stem cells and neurogenesis in the adult. Cell Stem Cell 10:657–659. doi:10.1016/j.stem.2012.04.005
Lazarov O, Mattson MP, Peterson DA et al (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33:569–579. doi:10.1016/j.tins.2010.09.003
Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodeg 6:85. doi:10.1186/1750-1326-6-85
Ming G-L, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi:10.1016/j.neuron.2011.05.001
Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Stem Cell 10:698–708. doi:10.1016/j.stem.2012.05.012
Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. doi:10.1038/nature05091
Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967. doi:10.1038/nature02060
Renault VM, Rafalski VA, Morgan AA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539. doi:10.1016/j.stem.2009.09.014
Ma DK, Jang M-H, Guo JU et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077. doi:10.1126/science.1166859
Hsieh J, Nakashima K, Kuwabara T et al (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664. doi:10.1073/pnas.0407643101
Gao Z, Ure K, Ding P et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786. doi:10.1523/JNEUROSCI.1604-11.2011
Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634
Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18:2803–2812. doi:10.1046/j.1460-9568.2003.03041.x
Villeda SA, Luo J, Mosher KI et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94. doi:10.1038/nature10357
Shen Q, Wang Y, Kokovay E et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300. doi:10.1016/j.stem.2008.07.026
Tavazoie M, Van der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288. doi:10.1016/j.stem.2008.07.025
Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494
van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. doi:10.1038/6368
van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198. doi:10.1038/35044558
Aberg MAI, Waern M, Nyberg J et al (2012) Cardiovascular fitness in males at age 18 and risk of serious depression in adulthood: Swedish prospective population-based study. Br J Psychiatry. doi:10.1192/bjp.bp.111.103416
Knöchel C, Oertel-Knöchel V, O’Dwyer L et al (2012) Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog Neurobiol 96:46–68. doi:10.1016/j.pneurobio.2011.11.007
Larson EB, Wang L, Bowen JD et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81
Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663. doi:10.1038/nm.3569
Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. doi:10.1126/science.1251141
Paliouras GN, Hamilton LK, Aumont A et al (2012) Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32:15012–15026. doi:10.1523/JNEUROSCI.2248-12.2012
Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765. doi:10.1126/science.1088417
Iosif RE (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712. doi:10.1523/JNEUROSCI.2723-06.2006
Koo JW, Duman RS (2008) IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105:751–756
Kaneko N, Kudo K, Mabuchi T et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31:2619–2626. doi:10.1038/sj.npp.1301137
Scheibel RS, Valentine AD, O’Brien S, Meyers CA (2004) Cognitive dysfunction and depression during treatment with interferon-alpha and chemotherapy. J Neuropsychiatry Clin Neurosci 16:185–191. doi:10.1176/appi.neuropsych.16.2.185
Hilsabeck RC, Hassanein TI, Ziegler EA et al (2005) Effect of interferon-alpha on cognitive functioning in patients with chronic hepatitis C. J Int Neuropsychol Soc 11:16–22. doi:10.1017/S1355617705050022
Moriyama M, Fukuhara T, Britschgi M et al (2011) Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci 31:3981–3989. doi:10.1523/JNEUROSCI.3617-10.2011
Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci. doi:10.1073/pnas.1211270110
Vasudevan AR (2006) Eotaxin and obesity. J Clin Endocrinol Metab 91:256–261. doi:10.1210/jc.2005-1280
Choi KM, Kim JH, Cho GJ et al (2007) Effect of exercise training on plasma visfatin and eotaxin levels. Eur J Endocrinol 157:437–442. doi:10.1530/EJE-07-0127
Jin K, Peel AL, Mao XO et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347. doi:10.1073/pnas.2634794100
Haughey NJ, Nath A, Chan SL et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524
Verret L, Jankowsky JL, Xu GM et al (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27:6771–6780. doi:10.1523/JNEUROSCI.5564-06.2007
López-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 12:229–240
Wen PH, Shao X, Shao Z et al (2002) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10:8–19. doi:10.1006/nbdi.2002.0490
Hu WT, Holtzman DM, Fagan AM et al (2012) Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79:897–905. doi:10.1212/WNL.0b013e318266fa70
Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362. doi:10.1038/nm1653
Johnstone D, Milward EA, Berretta R et al (2012) Multivariate protein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One 7:e34341. doi:10.1371/journal.pone.0034341.t009
Hye A, Riddoch-Contreras J, Baird AL et al (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10:799–807.e2. doi:10.1016/j.jalz.2014.05.1749
Soares HD, Potter WZ, Pickering E et al (2012) Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 69(10):1310–1317. doi:10.1001/archneurol.2012.1070
Britschgi M, Rufibach K, Huang SL et al (2011) Modeling of pathological traits in Alzheimer’s disease based on systemic extracellular signaling proteome. Mol Cell Proteomics 10(M111):008862
Kiddle SJ, Thambisetty M, Simmons A et al (2012) Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS One 7:e44260. doi:10.1371/journal.pone.0044260.t003
Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050. doi:10.1093/brain/awl279
Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9. doi:10.1093/gerona/glu057
Dubal DB, Zhu L, Sanchez PE et al (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 35:2358–2371. doi:10.1523/JNEUROSCI.5791-12.2015
Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015. doi:10.1038/nm1484
Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122. doi:10.1016/j.neuron.2009.08.039
McGeer PL, McGeer E, Rogers J, Sibley J (1990) Anti-inflammatory drugs and Alzheimer disease. Lancet 335:1037
Côté S, Carmichael P-H, Verreault R et al (2012) Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimers Dement 8:219–226. doi:10.1016/j.jalz.2011.03.012
Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70:1672–1677. doi:10.1212/01.wnl.0000311269.57716.63
Holmes C, Cunningham C, Zotova E et al (2011) Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77:212–218. doi:10.1212/WNL.0b013e318225ae07
Holmes C, Cunningham C, Zotova E et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774. doi:10.1212/WNL.0b013e3181b6bb95
Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. Plos Biol 6:e301. doi:10.1371/journal.pbio.0060301
Salminen A, Ojala J, Kaarniranta K et al (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34:3–11. doi:10.1111/j.1460-9568.2011.07738.x
Podtelezhnikov AA, Tanis KQ, Nebozhyn M et al (2011) Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS One 6:e29610. doi:10.1371/journal.pone.0029610
Zhang B, Gaiteri C, Bodea L-G et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell 153:707–720. doi:10.1016/j.cell.2013.03.030
Linnartz B, Neumann H (2012) Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia. doi:10.1002/glia.22359
Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116. doi:10.1056/NEJMoa1211103
Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. doi:10.1056/NEJMoa1211851
Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet 43:436–441. doi:10.1038/ng.801
Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435. doi:10.1038/ng.803
Lambert J-C, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12):1452–1458. doi:10.1038/ng.2802
Zhang G, Li J, Purkayastha S et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–216. doi:10.1038/nature12143
den Dunnen WFA, Brouwer WH, Bijlard E et al (2008) No disease in the brain of a 115-year-old woman. Neurobiol Aging 29:1127–1132. doi:10.1016/j.neurobiolaging.2008.04.010
Katsel P, Tan W, Haroutunian V (2009) Gain in brain immunity in the oldest-old differentiates cognitively normal from demented individuals. PLoS One 4:e7642. doi:10.1371/journal.pone.0007642.t009
Ron-Harel N, Schwartz M (2009) Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 32:367–375. doi:10.1016/j.tins.2009.03.003
Lampron A, Gosselin D, Rivest S (2011) Targeting the hematopoietic system for the treatment of Alzheimer’s disease. Brain Behav Immun 25(Suppl 1):S71–S79. doi:10.1016/j.bbi.2010.12.018
Acknowledgments
This work was supported by the Department of Veterans Affairs (T.W.-C.), and the NIA (AG045034 (T.W.-C.)).
Editor: Bradley Wise, National Institute on Aging (NIA), NIH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing
About this chapter
Cite this chapter
Kerchner, G.A., Wyss-Coray, T. (2016). The Role of Aging in Alzheimer’s Disease. In: Sierra, F., Kohanski, R. (eds) Advances in Geroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-23246-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-23246-1_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23245-4
Online ISBN: 978-3-319-23246-1
eBook Packages: MedicineMedicine (R0)