The Role of Aging in Alzheimer’s Disease

  • Geoffrey A. Kerchner
  • Tony Wyss-CorayEmail author


Cognitive function in humans declines in essentially all domains starting in the late 50s, and neurodegeneration and dementia seem to be inevitable in all but a few of those who survive to very old age. While age-related cognitive dysfunction and Alzheimer’s disease in humans are clearly distinct entities and seem to affect different brain regions, both show the telltale molecular and cellular changes that characterize tissue aging including abnormal proteostasis, loss in stem cell activity, and inflammation. Adding to the challenge of differentiating the two, Alzheimer’s disease is thought to begin up to 20 years before it manifests clinically and, accordingly, there is significant overlap between brain aging and the disease based on structural and functional brain imaging. This chapter will highlight commonalities and emphasize divergences between “normal” brain aging and Alzheimer’s disease and discuss novel approaches to understand the link between the two.


Alzheimer’s Aging Proteostasis Epigenetic Inflammation Geroscience 



This work was supported by the Department of Veterans Affairs (T.W.-C.), and the NIA (AG045034 (T.W.-C.)).

Editor: Bradley Wise, National Institute on Aging (NIA), NIH.


  1. 1.
    Yankner BA, Lu T, Loerch P (2008) The aging brain. Ann Rev Pathol Mech Dis 3:41–66. doi: 10.1146/annurev.pathmechdis.2.010506.092044 Google Scholar
  2. 2.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535. doi: 10.1038/nature08983 PubMedCentralPubMedGoogle Scholar
  3. 3.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. doi: 10.1016/j.jalz.2011.03.005 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. doi: 10.1016/j.jalz.2011.03.008 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Vos SJ, Verhey F, Frolich L et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain. doi: 10.1093/brain/awv029 Google Scholar
  6. 6.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222. doi: 10.1016/j.cell.2012.02.040 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Jack CR Jr, Holtzman DM (2013) Biomarker modeling of Alzheimer’s disease. Neuron 80:1347–1358. doi: 10.1016/j.neuron.2013.12.003 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Cohen AD, Klunk WE (2014) Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 72:117–122. doi: 10.1016/j.nbd.2014.05.001 PubMedGoogle Scholar
  9. 9.
    Okamura N, Harada R, Furumoto S et al (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14:500–507. doi: 10.1007/s11910-014-0500-6 PubMedGoogle Scholar
  10. 10.
    Deary IJ, Corley J, Gow AJ et al (2009) Age-associated cognitive decline. Br Med Bull 92:135–152. doi: 10.1093/bmb/ldp033 PubMedGoogle Scholar
  11. 11.
    Chadick JZ, Zanto TP, Gazzaley A (2014) Structural and functional differences in medial prefrontal cortex underlie distractibility and suppression deficits in ageing. Nat Commun 5:4223. doi: 10.1038/ncomms5223 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Hayden KM, Reed BR, Manly JJ et al (2011) Cognitive decline in the elderly: an analysis of population heterogeneity. Age Ageing 40:684–689. doi: 10.1093/ageing/afr101 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Tang YP, Shimizu E, Dube GR et al (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69. doi: 10.1038/43432 PubMedGoogle Scholar
  14. 14.
    Cui Z, Feng R, Jacobs S et al (2013) Increased NR2A: NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 3:1036. doi: 10.1038/srep01036 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Chetelat G, La Joie R, Villain N et al (2013) Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. NeuroImage Clin 2:356–365. doi: 10.1016/j.nicl.2013.02.006 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. NBA 18:351–357. doi: 10.1016/S0197-4580(97)00056-0 Google Scholar
  17. 17.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. doi: 10.1097/NEN.0b013e318232a379 PubMedGoogle Scholar
  18. 18.
    Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828. doi: 10.1016/S1474-4422(11)70072-2 PubMedCentralPubMedGoogle Scholar
  19. 19.
    McKee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66. doi: 10.1016/B978-0-444-52892-6.00004-0 PubMedGoogle Scholar
  20. 20.
    Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43:615–621. doi: 10.1016/j.arcmed.2012.09.008 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Wilson RS, Boyle PA, Yu L et al (2013) Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology 81:314–321. doi: 10.1212/WNL.0b013e31829c5e8a PubMedCentralPubMedGoogle Scholar
  22. 22.
    Michaelson DM (2014) APOE epsilon4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 10:861–868. doi: 10.1016/j.jalz.2014.06.015 PubMedGoogle Scholar
  23. 23.
    Altmann A, Tian L, Henderson VW et al (2014) Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 75:563–573. doi: 10.1002/ana.24135 PubMedCentralPubMedGoogle Scholar
  24. 24.
    Yaffe K, Cauley J, Sands L, Browner W (1997) Apolipoprotein E phenotype and cognitive decline in a prospective study of elderly community women. Arch Neurol 54:1110–1114. doi: 10.1001/archneur.1997.00550210044011 PubMedGoogle Scholar
  25. 25.
    De Jager PL, Shulman JM, Chibnik LB et al (2012) A genome-wide scan for common variants affecting the rate of age-related cognitive decline. NBA 33:1017.e1–15. doi: 10.1016/j.neurobiolaging.2011.09.033 Google Scholar
  26. 26.
    Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132:1323–1338. doi: 10.1007/s00439-013-1342-z PubMedCentralPubMedGoogle Scholar
  27. 27.
    Dubal DB, Yokoyama JS, Zhu L et al (2014) Life extension factor klotho enhances cognition. Cell Reports 7(4):1065–1076. doi: 10.1016/j.celrep.2014.03.076 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci 105:13987–13992. doi: 10.1073/pnas.0801030105 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Fjell AM, McEvoy L, Holland D et al (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40. doi: 10.1016/j.pneurobio.2014.02.004 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fjell AM, Westlye LT, Grydeland H et al (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24:919–934. doi: 10.1093/cercor/bhs379 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Fraser MA, Shaw ME, Cherbuin N (2015) A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. Neuroimage. doi: 10.1016/j.neuroimage.2015.03.035 PubMedGoogle Scholar
  32. 32.
    Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi: 10.1007/s00401-006-0127-z PubMedCentralPubMedGoogle Scholar
  33. 33.
    Jack CRJ, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188PubMedGoogle Scholar
  34. 34.
    Kerchner GA, Hess CP, Hammond-Rosenbluth KE et al (2010) Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75:1381–1387PubMedCentralPubMedGoogle Scholar
  35. 35.
    Chhatwal JP, Sperling RA (2012) Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 31:S155–S167. doi: 10.3233/JAD-2012-120730 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624–1635. doi: 10.1016/j.neuropsychologia.2007.11.030 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Palop JJ, Mucke L (2010) Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. doi: 10.1038/nn.2583 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sanchez PE, Zhu L, Verret L et al (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci 109:E2895–E2903. doi: 10.1073/pnas.1121081109 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Vossel KA, Beagle AJ, Rabinovici GD et al (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158–1166. doi: 10.1001/jamaneurol.2013.136 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Bakker A, Krauss GL, Albert MS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. doi: 10.1016/j.neuron.2012.03.023 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Apostolova LG, Mosconi L, Thompson PM et al (2010) Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging 31:1077–1088. doi: 10.1016/j.neurobiolaging.2008.08.008 PubMedCentralPubMedGoogle Scholar
  42. 42.
    La Joie R, Perrotin A, La Sayette de V et al (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162. doi: 10.1016/j.nicl.2013.08.007 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Yassa MA, Stark SM, Bakker A et al (2010) High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage 51:1242–1252. doi: 10.1016/j.neuroimage.2010.03.040 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Yassa MA, Lacy JW, Stark SM et al (2011) Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21:968–979. doi: 10.1002/hipo.20808 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Small SA, Schobel SA, Buxton RB et al (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci. doi: 10.1038/nrn3085 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642. doi: 10.1073/pnas.0308627101 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 24:49–62. doi: 10.1007/s11065-014-9249-6 PubMedCentralPubMedGoogle Scholar
  48. 48.
    López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. doi: 10.1016/j.cell.2013.05.039 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Pan L, Penney J, Tsai L-H (2014) Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J Mol Biol 426:3376–3388. doi: 10.1016/j.jmb.2014.08.001 PubMedGoogle Scholar
  50. 50.
    Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer’s disease. Brain Res 849:67–77PubMedGoogle Scholar
  51. 51.
    Madabhushi R, Pan L, Tsai L-H (2014) DNA damage and its links to neurodegeneration. Neuron 83:266–282. doi: 10.1016/j.neuron.2014.06.034 PubMedGoogle Scholar
  52. 52.
    Lu T, Pan Y, Kao S-Y et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. doi: 10.1038/nature02661 PubMedGoogle Scholar
  53. 53.
    Suberbielle E, Sanchez PE, Kravitz AV et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621. doi: 10.1038/nn.3356 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Ferron SR, Marques-Torrejon MA, Mira H et al (2009) Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J Neurosci 29:14394–14407. doi: 10.1523/JNEUROSCI.3836-09.2009 PubMedGoogle Scholar
  55. 55.
    Wolf SA, Melnik A, Kempermann G (2011) Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 25:971–980. doi: 10.1016/j.bbi.2010.10.014 PubMedGoogle Scholar
  56. 56.
    Ferron S (2004) Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131:4059–4070. doi: 10.1242/dev.01215 PubMedGoogle Scholar
  57. 57.
    Eitan E, Hutchison ER, Mattson MP (2014) Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci 37:256–263. doi: 10.1016/j.tins.2014.02.010 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Panossian LA, Porter VR, Valenzuela HF et al (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. NBA 24:77–84Google Scholar
  59. 59.
    Roberts RO, Boardman LA, Cha RH et al (2014) Short and long telomeres increase risk of amnestic mild cognitive impairment. Mech Ageing Dev 141–142:64–69. doi: 10.1016/j.mad.2014.10.002 PubMedGoogle Scholar
  60. 60.
    Jacobs EG, Epel ES, Lin J et al (2014) Relationship between leukocyte telomere length, telomerase activity, and hippocampal volume in early aging. JAMA Neurol 71:921–923. doi: 10.1001/jamaneurol.2014.870 PubMedGoogle Scholar
  61. 61.
    Rolyan H, Scheffold A, Heinrich A et al (2011) Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain 134:2044–2056. doi: 10.1093/brain/awr133 PubMedGoogle Scholar
  62. 62.
    Flanary BE, Streit WJ (2004) Progressive teromere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45(1):75–88. PMID 14648548Google Scholar
  63. 63.
    Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604. doi: 10.1016/j.bcp.2014.01.008 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Spilsbury A, Miwa S, Attems J, Saretzki G (2015) The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J Neurosci 35:1659–1674. doi: 10.1523/JNEUROSCI.2925-14.2015 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Kosik KS, Rapp PR, Raz N et al (2012) Mechanisms of age-related cognitive change and targets for intervention: epigenetics. J Gerontol A Biol Sci Med Sci 67:741–746. doi: 10.1093/gerona/gls110 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506. doi: 10.1016/j.conb.2005.08.015 PubMedGoogle Scholar
  67. 67.
    Lu T, Aron L, Zullo J et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507(7493):448–454. doi: 10.1038/nature13163 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756. doi: 10.1126/science.1186088 PubMedGoogle Scholar
  69. 69.
    Pavlopoulos E, Jones S, Kosmidis S et al (2013) Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med 5:200ra115. doi: 10.1126/scitranslmed.3006373 PubMedGoogle Scholar
  70. 70.
    Hernandez DG, Nalls MA, Gibbs JR et al (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20:1164–1172. doi: 10.1093/hmg/ddq561 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17:1164–1170. doi: 10.1038/nn.3782 PubMedCentralPubMedGoogle Scholar
  72. 72.
    De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163. doi: 10.1038/nn.3786 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Lord J, Cruchaga C (2014) The epigenetic landscape of Alzheimer’s disease. Nat Neurosci 17:1138–1140. doi: 10.1038/nn.3792 PubMedGoogle Scholar
  74. 74.
    Yu L, Chibnik LB, Srivastava GP et al (2015) Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1With pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24. doi: 10.1001/jamaneurol.2014.3049 PubMedGoogle Scholar
  75. 75.
    Gjoneska E, Pfenning AR, Mathys H et al (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369. doi: 10.1038/nature14252 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Satoh J-I, Asahina N, Kitano S, Kino Y (2014) A comprehensive profile of ChIP-Seq-Based PU.1/Spi1 target genes in microglia. GRSB 8:127–13. doi: 10.4137/GRSB.S19711 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Bennett DA, Yu L, Yang J et al (2015) Epigenomics of Alzheimer’s disease. Transl Res 165:200–220. doi: 10.1016/j.trsl.2014.05.006 PubMedGoogle Scholar
  78. 78.
    Zhang K, Schrag M, Crofton A et al (2012) Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 12:1261–1268. doi: 10.1002/pmic.201200010 PubMedGoogle Scholar
  79. 79.
    Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179. doi: 10.1038/sj.emboj.7601758 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Dobbin MM, Madabhushi R, Pan L et al (2013) SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16:1008–1015. doi: 10.1038/nn.3460 PubMedGoogle Scholar
  81. 81.
    Huang PS, Son JH, Abbott LC, Winzer-Serhan UH (2011) Regulated expression of neuronal SIRT1 and related genes by aging and neuronal β2-containing nicotinic cholinergic receptors. Neuroscience 196:189–202. doi: 10.1016/j.neuroscience.2011.09.007 PubMedGoogle Scholar
  82. 82.
    Cho SH, Chen JA, Sayed F et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1. J Neurosci 35:807–818. doi: 10.1523/JNEUROSCI.2939-14.2015 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Gapp K, Woldemichael BT, Bohacek J, Mansuy IM (2014) Reviewepigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 264:99–111. doi: 10.1016/j.neuroscience.2012.11.040 PubMedGoogle Scholar
  84. 84.
    Penner MR, Roth TL, Barnes CA, Sweatt JD (2010) An epigenetic hypothesis of aging-related cognitive dysfunction. Front Aging Neurosci. doi: 10.3389/fnagi.2010.00009 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Eckert A, Schmitt K, Götz J (2011) Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 3:15. doi: 10.1186/alzrt74 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Swerdlow RH (2011) Brain aging, Alzheimer’s disease, and mitochondria. BBA Mol Basis Dis 1812:1630–1639. doi: 10.1016/j.bbadis.2011.08.012 Google Scholar
  87. 87.
    Santos RX, Correia SC, Zhu X et al (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 18:2444–2457. doi: 10.1089/ars.2012.5039 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645PubMedGoogle Scholar
  89. 89.
    Mecocci P, MacGarvey U, Kaufman AE et al (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616. doi: 10.1002/ana.410340416 PubMedGoogle Scholar
  90. 90.
    Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751. doi: 10.1002/ana.410360510 PubMedGoogle Scholar
  91. 91.
    Lin MT, Simon DK, Ahn CH et al (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11:133–145PubMedGoogle Scholar
  92. 92.
    Navarro A, Boveris A (2006) The mitochondrial energy transduction system and the aging process. AJP Cell Physiol 292:C670–C686. doi: 10.1152/ajpcell.00213.2006 Google Scholar
  93. 93.
    Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3:a004457. doi: 10.1101/cshperspect.a004457 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Bateman RJ, Munsell LY, Morris JC et al (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861. doi: 10.1038/nm1438 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Krabbe G, Halle A, Matyash V et al (2013) Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8:e60921. doi: 10.1371/journal.pone.0060921.s005 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Wyss-Coray T, Loike JD, Brionne TC et al (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457. doi: 10.1038/nm838 PubMedGoogle Scholar
  97. 97.
    Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid -peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2:a011452. doi: 10.1101/cshperspect.a011452 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Saido T, Leissring MA (2012) Proteolytic degradation of amyloid -protein. Cold Spring Harb Perspect Med 2:a006379. doi: 10.1101/cshperspect.a006379 PubMedCentralPubMedGoogle Scholar
  99. 99.
    LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872. doi: 10.1038/nrn960 PubMedGoogle Scholar
  100. 100.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedGoogle Scholar
  101. 101.
    Sultana R, Boyd-Kimball D, Poon HF et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576. doi: 10.1016/j.neurobiolaging.2005.09.021 PubMedGoogle Scholar
  102. 102.
    Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714. doi: 10.1093/hmg/ddh083 PubMedGoogle Scholar
  103. 103.
    Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med 236:268–276. doi: 10.1258/ebm.2010.010327 Google Scholar
  104. 104.
    Manavalan A, Mishra M, Feng L (2013) Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45:e39–17. doi: 10.1038/emm.2013.76 Google Scholar
  105. 105.
    Almeida CG (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288. doi: 10.1523/JNEUROSCI.5078-05.2006 PubMedGoogle Scholar
  106. 106.
    Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658. doi: 10.1172/JCI29715 PubMedCentralPubMedGoogle Scholar
  107. 107.
    O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653. doi: 10.1016/j.exger.2013.02.025 Google Scholar
  108. 108.
    Caccamo A, Magrì A, Medina DX et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380. doi: 10.1111/acel.12057 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979–8. doi: 10.1371/journal.pone.0009979 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Mrak R, Griffin WS, Graham DI (1997) Agin-associated changes in human brain. J Neuropathol Exp Neurol 56:1269–1275PubMedGoogle Scholar
  111. 111.
    Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002. doi: 10.1046/j.1432-1033.2002.02869.x PubMedGoogle Scholar
  112. 112.
    Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 25:1161–1172PubMedGoogle Scholar
  113. 113.
    Nixon RA, Wegiel J, Kumar A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122PubMedGoogle Scholar
  114. 114.
    Pickford F, Masliah E, Britschgi M et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199. doi: 10.1172/JCI33585 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Nilsson P, Loganathan K, Sekiguchi M et al (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5:61–69. doi: 10.1016/j.celrep.2013.08.042 PubMedGoogle Scholar
  116. 116.
    Ash PEA, Vanderweyde TE, Youmans KL et al (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58. doi: 10.1016/j.brainres.2014.05.052 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Castellani RJ, Gupta Y, Sheng B et al (2011) A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: parallels to stress granules. Lab Invest 91:1777–1786. doi: 10.1038/labinvest.2011.149 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Vanderweyde T, Yu H, Varnum M et al (2012) Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci 32:8270–8283. doi: 10.1523/JNEUROSCI.1592-12.2012 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335PubMedGoogle Scholar
  120. 120.
    van Wijngaarden P, Franklin RJM (2013) Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development 140:2562–2575. doi: 10.1242/dev.092262 PubMedGoogle Scholar
  121. 121.
    Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. doi: 10.1038/3305 PubMedGoogle Scholar
  122. 122.
    Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. doi: 10.1016/j.cell.2013.05.002 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Göritz C, Frisén J (2012) Neural stem cells and neurogenesis in the adult. Cell Stem Cell 10:657–659. doi: 10.1016/j.stem.2012.04.005 PubMedGoogle Scholar
  124. 124.
    Lazarov O, Mattson MP, Peterson DA et al (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33:569–579. doi: 10.1016/j.tins.2010.09.003 PubMedCentralPubMedGoogle Scholar
  125. 125.
    Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodeg 6:85. doi: 10.1186/1750-1326-6-85 Google Scholar
  126. 126.
    Ming G-L, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi: 10.1016/j.neuron.2011.05.001 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Stem Cell 10:698–708. doi: 10.1016/j.stem.2012.05.012 Google Scholar
  128. 128.
    Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. doi: 10.1038/nature05091 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967. doi: 10.1038/nature02060 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Renault VM, Rafalski VA, Morgan AA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539. doi: 10.1016/j.stem.2009.09.014 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Ma DK, Jang M-H, Guo JU et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077. doi: 10.1126/science.1166859 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Hsieh J, Nakashima K, Kuwabara T et al (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664. doi: 10.1073/pnas.0407643101 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Gao Z, Ure K, Ding P et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786. doi: 10.1523/JNEUROSCI.1604-11.2011 PubMedCentralPubMedGoogle Scholar
  134. 134.
    Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634PubMedGoogle Scholar
  135. 135.
    Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18:2803–2812. doi: 10.1046/j.1460-9568.2003.03041.x PubMedGoogle Scholar
  136. 136.
    Villeda SA, Luo J, Mosher KI et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94. doi: 10.1038/nature10357 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Shen Q, Wang Y, Kokovay E et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300. doi: 10.1016/j.stem.2008.07.026 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Tavazoie M, Van der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288. doi: 10.1016/j.stem.2008.07.025 PubMedGoogle Scholar
  139. 139.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494PubMedGoogle Scholar
  140. 140.
    van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. doi: 10.1038/6368 PubMedGoogle Scholar
  141. 141.
    van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198. doi: 10.1038/35044558 PubMedGoogle Scholar
  142. 142.
    Aberg MAI, Waern M, Nyberg J et al (2012) Cardiovascular fitness in males at age 18 and risk of serious depression in adulthood: Swedish prospective population-based study. Br J Psychiatry. doi: 10.1192/bjp.bp.111.103416 PubMedGoogle Scholar
  143. 143.
    Knöchel C, Oertel-Knöchel V, O’Dwyer L et al (2012) Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog Neurobiol 96:46–68. doi: 10.1016/j.pneurobio.2011.11.007 PubMedGoogle Scholar
  144. 144.
    Larson EB, Wang L, Bowen JD et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81PubMedGoogle Scholar
  145. 145.
    Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663. doi: 10.1038/nm.3569 PubMedCentralPubMedGoogle Scholar
  146. 146.
    Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. doi: 10.1126/science.1251141 PubMedCentralPubMedGoogle Scholar
  147. 147.
    Paliouras GN, Hamilton LK, Aumont A et al (2012) Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32:15012–15026. doi: 10.1523/JNEUROSCI.2248-12.2012 PubMedGoogle Scholar
  148. 148.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765. doi: 10.1126/science.1088417 PubMedGoogle Scholar
  149. 149.
    Iosif RE (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712. doi: 10.1523/JNEUROSCI.2723-06.2006 PubMedGoogle Scholar
  150. 150.
    Koo JW, Duman RS (2008) IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105:751–756PubMedCentralPubMedGoogle Scholar
  151. 151.
    Kaneko N, Kudo K, Mabuchi T et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31:2619–2626. doi: 10.1038/sj.npp.1301137 PubMedGoogle Scholar
  152. 152.
    Scheibel RS, Valentine AD, O’Brien S, Meyers CA (2004) Cognitive dysfunction and depression during treatment with interferon-alpha and chemotherapy. J Neuropsychiatry Clin Neurosci 16:185–191. doi: 10.1176/appi.neuropsych.16.2.185 PubMedGoogle Scholar
  153. 153.
    Hilsabeck RC, Hassanein TI, Ziegler EA et al (2005) Effect of interferon-alpha on cognitive functioning in patients with chronic hepatitis C. J Int Neuropsychol Soc 11:16–22. doi: 10.1017/S1355617705050022 PubMedGoogle Scholar
  154. 154.
    Moriyama M, Fukuhara T, Britschgi M et al (2011) Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci 31:3981–3989. doi: 10.1523/JNEUROSCI.3617-10.2011 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci. doi: 10.1073/pnas.1211270110 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Vasudevan AR (2006) Eotaxin and obesity. J Clin Endocrinol Metab 91:256–261. doi: 10.1210/jc.2005-1280 PubMedGoogle Scholar
  157. 157.
    Choi KM, Kim JH, Cho GJ et al (2007) Effect of exercise training on plasma visfatin and eotaxin levels. Eur J Endocrinol 157:437–442. doi: 10.1530/EJE-07-0127 PubMedGoogle Scholar
  158. 158.
    Jin K, Peel AL, Mao XO et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347. doi: 10.1073/pnas.2634794100 PubMedCentralPubMedGoogle Scholar
  159. 159.
    Haughey NJ, Nath A, Chan SL et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524PubMedGoogle Scholar
  160. 160.
    Verret L, Jankowsky JL, Xu GM et al (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27:6771–6780. doi: 10.1523/JNEUROSCI.5564-06.2007 PubMedCentralPubMedGoogle Scholar
  161. 161.
    López-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 12:229–240PubMedGoogle Scholar
  162. 162.
    Wen PH, Shao X, Shao Z et al (2002) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10:8–19. doi: 10.1006/nbdi.2002.0490 PubMedGoogle Scholar
  163. 163.
    Hu WT, Holtzman DM, Fagan AM et al (2012) Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79:897–905. doi: 10.1212/WNL.0b013e318266fa70 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362. doi: 10.1038/nm1653 PubMedGoogle Scholar
  165. 165.
    Johnstone D, Milward EA, Berretta R et al (2012) Multivariate protein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One 7:e34341. doi: 10.1371/journal.pone.0034341.t009 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Hye A, Riddoch-Contreras J, Baird AL et al (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10:799–807.e2. doi: 10.1016/j.jalz.2014.05.1749 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Soares HD, Potter WZ, Pickering E et al (2012) Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 69(10):1310–1317. doi: 10.1001/archneurol.2012.1070 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Britschgi M, Rufibach K, Huang SL et al (2011) Modeling of pathological traits in Alzheimer’s disease based on systemic extracellular signaling proteome. Mol Cell Proteomics 10(M111):008862PubMedGoogle Scholar
  169. 169.
    Kiddle SJ, Thambisetty M, Simmons A et al (2012) Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS One 7:e44260. doi: 10.1371/journal.pone.0044260.t003 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050. doi: 10.1093/brain/awl279 PubMedGoogle Scholar
  171. 171.
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9. doi: 10.1093/gerona/glu057 PubMedGoogle Scholar
  172. 172.
    Dubal DB, Zhu L, Sanchez PE et al (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 35:2358–2371. doi: 10.1523/JNEUROSCI.5791-12.2015 PubMedCentralPubMedGoogle Scholar
  173. 173.
    Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015. doi: 10.1038/nm1484 PubMedGoogle Scholar
  174. 174.
    Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122. doi: 10.1016/j.neuron.2009.08.039 PubMedCentralPubMedGoogle Scholar
  175. 175.
    McGeer PL, McGeer E, Rogers J, Sibley J (1990) Anti-inflammatory drugs and Alzheimer disease. Lancet 335:1037PubMedGoogle Scholar
  176. 176.
    Côté S, Carmichael P-H, Verreault R et al (2012) Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimers Dement 8:219–226. doi: 10.1016/j.jalz.2011.03.012 PubMedGoogle Scholar
  177. 177.
    Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70:1672–1677. doi: 10.1212/01.wnl.0000311269.57716.63 PubMedCentralPubMedGoogle Scholar
  178. 178.
    Holmes C, Cunningham C, Zotova E et al (2011) Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77:212–218. doi: 10.1212/WNL.0b013e318225ae07 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Holmes C, Cunningham C, Zotova E et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774. doi: 10.1212/WNL.0b013e3181b6bb95 PubMedCentralPubMedGoogle Scholar
  180. 180.
    Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. Plos Biol 6:e301. doi: 10.1371/journal.pbio.0060301 PubMedCentralGoogle Scholar
  181. 181.
    Salminen A, Ojala J, Kaarniranta K et al (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34:3–11. doi: 10.1111/j.1460-9568.2011.07738.x PubMedGoogle Scholar
  182. 182.
    Podtelezhnikov AA, Tanis KQ, Nebozhyn M et al (2011) Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS One 6:e29610. doi: 10.1371/journal.pone.0029610 PubMedCentralPubMedGoogle Scholar
  183. 183.
    Zhang B, Gaiteri C, Bodea L-G et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell 153:707–720. doi: 10.1016/j.cell.2013.03.030 Google Scholar
  184. 184.
    Linnartz B, Neumann H (2012) Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia. doi: 10.1002/glia.22359 PubMedGoogle Scholar
  185. 185.
    Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116. doi: 10.1056/NEJMoa1211103 PubMedCentralPubMedGoogle Scholar
  186. 186.
    Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. doi: 10.1056/NEJMoa1211851 PubMedCentralPubMedGoogle Scholar
  187. 187.
    Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet 43:436–441. doi: 10.1038/ng.801 Google Scholar
  188. 188.
    Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435. doi: 10.1038/ng.803 PubMedCentralPubMedGoogle Scholar
  189. 189.
    Lambert J-C, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12):1452–1458. doi: 10.1038/ng.2802 PubMedCentralPubMedGoogle Scholar
  190. 190.
    Zhang G, Li J, Purkayastha S et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–216. doi: 10.1038/nature12143 PubMedCentralPubMedGoogle Scholar
  191. 191.
    den Dunnen WFA, Brouwer WH, Bijlard E et al (2008) No disease in the brain of a 115-year-old woman. Neurobiol Aging 29:1127–1132. doi: 10.1016/j.neurobiolaging.2008.04.010 Google Scholar
  192. 192.
    Katsel P, Tan W, Haroutunian V (2009) Gain in brain immunity in the oldest-old differentiates cognitively normal from demented individuals. PLoS One 4:e7642. doi: 10.1371/journal.pone.0007642.t009 PubMedCentralPubMedGoogle Scholar
  193. 193.
    Ron-Harel N, Schwartz M (2009) Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 32:367–375. doi: 10.1016/j.tins.2009.03.003 PubMedGoogle Scholar
  194. 194.
    Lampron A, Gosselin D, Rivest S (2011) Targeting the hematopoietic system for the treatment of Alzheimer’s disease. Brain Behav Immun 25(Suppl 1):S71–S79. doi: 10.1016/j.bbi.2010.12.018 PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  2. 2.Center for Tissue Regeneration, Repair and RestorationVeterans Affairs Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations