Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Image Analysis and Processing

ICIAP 2015: Image Analysis and Processing — ICIAP 2015 pp 598–608Cite as

  1. Home
  2. Image Analysis and Processing — ICIAP 2015
  3. Conference paper
A New Approach to Detect Use of Alcohol Through Iris Videos Using Computer Vision

A New Approach to Detect Use of Alcohol Through Iris Videos Using Computer Vision

  • Hedenir Monteiro Pinheiro15,
  • Ronaldo Martins da Costa15,18,
  • Eduardo Nery Rossi Camilo16,
  • Anderson da Silva Soares15,
  • Rogerio Salvini15,17,
  • Gustavo Teodoro Laureano15,
  • Fabrizzio Alphonsus Soares15 &
  • …
  • Gang Hua18 
  • Conference paper
  • First Online: 01 January 2015
  • 2922 Accesses

  • 4 Citations

  • 10 Altmetric

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9280)

Abstract

In all modern society the increase in alcohol consumption has caused many problems and the potential harmful effects of alcohol on human health are known. There are some ways to identify alcohol in a person, but they are invasive and embarrassing for people. This work proposes a new non-invasive and simple test to detect use of alcohol through of pupillary reflex analysis. The initial results present rates near 85% in the correct identification using algorithms for pattern recognition, demonstrating the efficacy of the test method.

Keywords

  • Pupillometer
  • Blood alcohol
  • Iris
  • Alcohol

R. M. da Costa—The author thanks FAPEG and CNPQ for providing support for the development of this research.

Download conference paper PDF

References

  1. Abe, S.: Support Vector Machines for Pattern Classification. Springer (2010)

    Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  3. Bär, K.J., Schulz, S., Koschke, M., Harzendorf, C., Gayde, S., Berg, W., Voss, A., Yeragani, V.K., Boettger, M.K.: Correlations between the autonomic modulation of heart rate, blood pressure and the pupillary light reflex in healthy subjects. Journal of the Neurological Sciences 279(1), 9–13 (2009)

    CrossRef  Google Scholar 

  4. Bergamin, O., Zimmerman, M.B., Kardon, R.H.: Pupil light reflex in normal and diseased eyes: diagnosis of visual dysfunction using waveform partitioning. Ophthalmology 110(1), 106–114 (2003)

    CrossRef  Google Scholar 

  5. Bittner, D.M., Wieseler, I., Wilhelm, H., Riepe, M.W., Müller, N.G.: Repetitive pupil light reflex: potential marker in Alzheimer’s disease? Journal of Alzheimer’s Disease 42(4), 1469–1477 (2014)

    Google Scholar 

  6. Chang, D.S., Arora, K.S., Boland, M.V., Supakontanasan, W., Friedman, D.S.: Development and Validation of an Associative Model for the Detection of Glaucoma Using Pupillography. American Journal of Ophthalmology 156(6), 1285–1296 (2013)

    CrossRef  Google Scholar 

  7. Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N., Andrian, J.: A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image and Vision Computing 28(2), 261–269 (2010)

    CrossRef  Google Scholar 

  8. Chen, Y., Wang, J., Han, C., Wang, L., Adjouadi, M.: A robust segmentation approach to iris recognition based on video. In: 37th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  9. da Costa, R.M., Gonzaga, A.: Dynamic features for iris recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(4), 1072–1082 (2012)

    CrossRef  Google Scholar 

  10. Crabbe, J.C., Harris, R.A., Koob, G.F.: Preclinical studies of alcohol binge drinking. Annals of the New York Academy of Sciences 1216(1), 24–40 (2011)

    CrossRef  Google Scholar 

  11. Ferrari, G.L., Marques, J.L.B., Gandhi, R.A., Emery, C.J., Tesfaye, S., Heller, S.R., Schneider, F.K., Gamba, H.R.: An approach to the assessment of diabetic neuropathy based on dynamic pupillometry. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 557–560. IEEE (2007)

    Google Scholar 

  12. Giza, E., Fotiou, D., Bostantjopoulou, S., Katsarou, Z., Gerasimou, G., Gotzamani-Psarrakou, A., Karlovasitou, A.: Pupillometry and 123I-DaTSCAN imaging in Parkinson’s disease: a comparison study. International Journal of Neuroscience 122(1), 26–34 (2011)

    CrossRef  Google Scholar 

  13. Hollingsworth, K., Bowyer, K.W., Flynn, P.J.: Pupil dilation degrades iris biometric performance. Computer Vision and Image Understanding 113(1), 150–157 (2009). http://dx.doi.org/10.1016/j.cviu.2008.08.001

    CrossRef  Google Scholar 

  14. Jan, F., Usman, I., Agha, S.: Iris localization in frontal eye images for less constrained iris recognition systems. Digital Signal Processing 22(6), 971–986 (2012)

    CrossRef  MathSciNet  Google Scholar 

  15. Kawasaki, A., Crippa, S.V., Kardon, R., Leon, L., Hamel, C.: Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. Investigative Ophthalmology and Visual Science 53(9), 5562–5569 (2012)

    CrossRef  Google Scholar 

  16. Martinez-Ricarte, F., Castro, A., Poca, M.A., Sahuquillo, J., Exposito, L., Arribas, M., Aparicio, J.: Infrared pupillometry. Basic principles and their application in the non-invasive monitoring of neurocritical patients. Neurología (English Edition) 28(1), 41–51 (2013)

    CrossRef  Google Scholar 

  17. Meunier, F., Laperriere, D.: A video-based image processing system for the automatic implementation of the eye involuntary reflexes measurements involved in the drug recognition expert (dre). In: IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2008, pp. 599–605. IEEE (2008)

    Google Scholar 

  18. Pava, M.J., Woodward, J.J.: A review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol 46(3), 185–204 (2012)

    CrossRef  Google Scholar 

  19. Pinheiro, H., Costa, R., Laureano, G., Romero, R., Soares, F., Galdino, L.: Human iris segmentation on videos obtained via natural lighting from smartphones. In: Proceedings of X Workshop of Computer Vision. Uberlandia: Facom, vol. 1, pp. 230–236. WVC (2014)

    Google Scholar 

  20. Tapia, J.E., Perez, C.a., Bowyer, K.W.: Gender Classification from Iris Images using Fusion of Uniform Local Binary Patterns pp. 1–13

    Google Scholar 

  21. Volpe, N.J., Plotkin, E.S., Maguire, M.G., Hariprasad, R., Galetta, S.L.: Portable pupillography of the swinging flashlight test to detect afferent pupillary defects. Ophthalmology 107(10), 1913–1921 (2000)

    CrossRef  Google Scholar 

  22. Wang, S., Wang, J.J., Wong, T.Y.: Alcohol and eye diseases. Survey of Ophthalmology 53(5), 512–525 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Instituto de Informtica, Universidade Federal de Goias, Goiania, Goias, Brazil

    Hedenir Monteiro Pinheiro, Ronaldo Martins da Costa, Anderson da Silva Soares, Rogerio Salvini, Gustavo Teodoro Laureano & Fabrizzio Alphonsus Soares

  2. Ophthalmologist, Goiania, Goias, Brazil

    Eduardo Nery Rossi Camilo

  3. University of Porto, Porto, Portugal

    Rogerio Salvini

  4. Stevens Institute of Technology, Hoboken, NJ, USA

    Ronaldo Martins da Costa & Gang Hua

Authors
  1. Hedenir Monteiro Pinheiro
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ronaldo Martins da Costa
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Eduardo Nery Rossi Camilo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Anderson da Silva Soares
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Rogerio Salvini
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Gustavo Teodoro Laureano
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Fabrizzio Alphonsus Soares
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Gang Hua
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ronaldo Martins da Costa .

Editor information

Editors and Affiliations

  1. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia (IIT), Genoa, Italy

    Vittorio Murino

  2. Università di Genova, Genoa, Italy

    Enrico Puppo

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pinheiro, H.M. et al. (2015). A New Approach to Detect Use of Alcohol Through Iris Videos Using Computer Vision. In: Murino, V., Puppo, E. (eds) Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science(), vol 9280. Springer, Cham. https://doi.org/10.1007/978-3-319-23234-8_55

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-23234-8_55

  • Published: 21 August 2015

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23233-1

  • Online ISBN: 978-3-319-23234-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature