Abstract
This paper investigates the use of digital polygons as a replacement for circular interpolated neighbourhoods for extracting texture features through Local Binary Patterns. The use of digital polygons has two main advantages: reduces the computational cost, and avoids the high-frequency loss resulting from pixel interpolation. The solution proposed in this work employs a sub-sampling scheme over Andres’ digital circles. The effectiveness of the method was evaluated in a supervised texture classification experiment over eight different datasets. The results showed that digital polygons outperformed interpolated circular neighbourhoods in most cases.
Keywords
- Local Binary Patterns
- Texture classification
- Digital circles
- Digital polygons
- Rotation invariance
Chapter PDF
References
Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011)
Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete Fourier transform. Pattern Recognition Letters 48, 34–41 (2014)
Burger, W., Burge, M.J.: Principles of Digital Image Processing: Core Algorithms. Springer (2009)
Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Machine Vision and Applications 22(6), 913–926 (2011)
Fernández, A., Álvarez, M.X., Bianconi, F.: Texture description through histograms of equivalent patterns. Journal of Mathematical Imaging and Vision 45(1), 76–102 (2013)
González, E., Bianconi, F., Fernández, A.: General framework for rotation invariant texture classification through co-occurrence of patterns. Journal of Mathematical Imaging and Vision 50, 300–313 (2014)
Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann (2004)
Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn, pp. 197–216. World Scientific Publishing (2005)
McIlroy, M.D.: Best approximate circles on integer grids. ACM Transactions on Graphics 2(4), 237–263 (1983)
Mukherjee, J., Das, P.P., Aswatha Kumar, M., Chatterji, B.N.: On approximating Euclidean metrics by digital distances in 2D and 3D. Pattern Recognition Letters 21(6–7), 573–582 (2000)
Nanni, L., Brahnam, S., Lumini, A.: Survey on LBP based texture descriptors for image classification. Expert Systems with Applications 39(3), 3634–3641 (2012)
Petrou, M., García Sevilla, P.: Image Processing. Dealing with Texture. Wiley Interscience (2006)
Prakash, J., Rajesh, K.: A novel approach for coin identification using eigenvalues of covariance matrix, Hough transform and raster scan algorithms. World Academy of Science, Engineering and Technology 2(8), 170–176 (2008)
Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 375–406. Imperial College Press (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pardo-Balado, J., Fernández, A., Bianconi, F. (2015). Texture Classification Using Rotation Invariant LBP Based on Digital Polygons. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds) New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science(), vol 9281. Springer, Cham. https://doi.org/10.1007/978-3-319-23222-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-23222-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23221-8
Online ISBN: 978-3-319-23222-5
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.iapr.org/