International Conference on Principles and Practice of Constraint Programming

CP 2015: Principles and Practice of Constraint Programming pp 609-626 | Cite as

Modeling Universal Instruction Selection

  • Gabriel Hjort Blindell
  • Roberto Castañeda Lozano
  • Mats Carlsson
  • Christian Schulte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9255)

Abstract

Instruction selection implements a program under compilation by selecting processor instructions and has tremendous impact on the performance of the code generated by a compiler. This paper introduces a graph-based universal representation that unifies data and control flow for both programs and processor instructions. The representation is the essential prerequisite for a constraint model for instruction selection introduced in this paper. The model is demonstrated to be expressive in that it supports many processor features that are out of reach of state-of-the-art approaches, such as advanced branching instructions, multiple register banks, and SIMD instructions. The resulting model can be solved for small to medium size input programs and sophisticated processor instructions and is competitive with LLVM in code quality. Model and representation are significant due to their expressiveness and their potential to be combined with models for other code generation tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Opturion CPX user’s guide: Version 1.0.2. Tech. rep., Opturion Pty Ltd (2013)Google Scholar
  2. 2.
    Aho, A.V., Ganapathi, M., Tjiang, S.W.K.: Code Generation Using Tree Matching and Dynamic Programming. Transactions on Programming Languages and Systems 11(4), 491–516 (1989)CrossRefGoogle Scholar
  3. 3.
    Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control Dependence to Data Dependence. In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 177–189 (1983)Google Scholar
  4. 4.
    Arslan, M.A., Kuchcinski, K.: Instruction Selection and Scheduling for DSP Kernels on Custom Architectures. In: EUROMICRO Conference on Digital System Design (2013)Google Scholar
  5. 5.
    Barany, G., Krall, A.: Optimal and Heuristic Global Code Motion for Minimal Spilling. In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction. LNCS, vol. 7791, pp. 21–40. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Bashford, S., Leupers, R.: Constraint Driven Code Selection for Fixed-Point DSPs. In: ACM/IEEE Design Automation Conference, pp. 817–822 (1999)Google Scholar
  7. 7.
    Bednarski, A., Kessler, C.W.: Optimal Integrated VLIW Code Generation with Integer Linear Programming. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 461–472. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Bruno, J., Sethi, R.: Code Generation for a One-Register Machine. Journal of the ACM 23(3), 502–510 (1976)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Buchwald, S., Zwinkau, A.: Instruction Selection by Graph Transformation. In: International Conference on Compilers, Architectures and Synthesis for Embedded Systems, pp. 31–40 (2010)Google Scholar
  10. 10.
    Castañeda Lozano, R., Carlsson, M., Blindell, G.H., Schulte, C.: Combinatorial spill code optimization and ultimate coalescing. In: Kulkarni, P. (ed.) Languages, Compilers, Tools and Theory for Embedded Systems, pp. 23–32. ACM Press, Edinburgh, UK (2014)Google Scholar
  11. 11.
    Lozano, R.C., Carlsson, M., Drejhammar, F., Schulte, C.: Constraint-Based Register Allocation and Instruction Scheduling. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 750–766. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Click, C.: Global Code Motion/Global Value Numbering. In: ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation, pp. 246–257 (1995)Google Scholar
  13. 13.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  14. 14.
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently Computing Static Single Assignment Form and the Control Dependence Graph. ACM TOPLAS 13(4), 451–490 (1991)CrossRefGoogle Scholar
  15. 15.
    Ebner, D., Brandner, F., Scholz, B., Krall, A., Wiedermann, P., Kadlec, A.: Generalized Instruction Selection Using SSA-Graphs. In: ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, pp. 31–40 (2008)Google Scholar
  16. 16.
    Eckstein, E., König, O., Scholz, B.: Code Instruction Selection Based on SSA-Graphs. In: Anshelevich, E. (ed.) SCOPES 2003. LNCS, vol. 2826, pp. 49–65. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  17. 17.
    Ertl, M.A.: Optimal Code Selection in DAGs. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 242–249 (1999)Google Scholar
  18. 18.
    Ertl, M.A., Casey, K., Gregg, D.: Fast and Flexible Instruction Selection with On-Demand Tree-Parsing Automata. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 52–60 (2006)Google Scholar
  19. 19.
    Floch, A., Wolinski, C., Kuchcinski, K.: Combined Scheduling and Instruction Selection for Processors with Reconfigurable Cell Fabric. In: International Conference on Application-Specific Systems, Architectures and Processors, pp. 167–174 (2010)Google Scholar
  20. 20.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  21. 21.
    Gebotys, C.H.: An Efficient Model for DSP Code Generation: Performance, Code Size, Estimated Energy. In: International Symposium on System Synthesis, pp. 41–47 (1997)Google Scholar
  22. 22.
    Glanville, R.S., Graham, S.L.: A New Method for Compiler Code Generation. In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 231–254 (1978)Google Scholar
  23. 23.
    Hjort Blindell, G.: Survey on Instruction Selection: An Extensive and Modern Literature Study. Tech. Rep. KTH/ICT/ECS/R-13/17-SE, KTH Royal Institute of Technology, Sweden (October 2013)Google Scholar
  24. 24.
    Johnson, N., Mycroft, A.: Combined Code Motion and Register Allocation Using the Value State Dependence Graph. In: International Conference of Compiler Construction, pp. 1–16 (2003)Google Scholar
  25. 25.
    Koes, D.R., Goldstein, S.C.: Near-Optimal Instruction Selection on DAGs. In: IEEE/ACM International Symposium on Code Generation and Optimization, pp. 45–54 (2008)Google Scholar
  26. 26.
    Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis & transformation. In: IEEE/ACM International Symposium on Code Generation and Optimization (2004)Google Scholar
  27. 27.
    Laurière, J.L.: A Language and a Program for Stating and Solving Combinatorial Problems. Artificial Intelligence 10(1), 29–127 (1978)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A tool for evaluating and synthesizing multimedia and communications systems. In: IEEE MICRO-30, pp. 330–335 (1997)Google Scholar
  29. 29.
    Leupers, R.: Code Selection for Media Processors with SIMD Instructions. In: Conference on Design, Automation and Test in Europe, pp. 4–8 (2000)Google Scholar
  30. 30.
    Martin, K., Wolinski, C., Kuchcinski, K., Floch, A., Charot, F.: Constraint-Driven Instructions Selection and Application Scheduling in the DURASE System. In: International Conference on Application-Specific Systems, Architectures and Processors, pp. 145–152 (2009)Google Scholar
  31. 31.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  32. 32.
    Pelegrí-Llopart, E., Graham, S.L.: Optimal Code Generation for Expression Trees: An Application of BURS Theory. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 294–308 (1988)Google Scholar
  33. 33.
    Sweetman, D.: See MIPS Run, Second Edition. Morgan Kaufmann (2006)Google Scholar
  34. 34.
    Tanaka, H., Kobayashi, S., Takeuchi, Y., Sakanushi, K., Imai, M.: A Code Selection Method for SIMD Processors with PACK Instructions. In: International Workshop on Software and Compilers for Embedded Systems, pp. 66–80Google Scholar
  35. 35.
    Živojnović, V., Martínez Velarde, J., Schläger, C., Meyr, H.: DSPstone: A DSP-Oriented Benchmarking Methodology. In: Conference on Signal Processing Applications and Technology, pp. 715–720 (1994)Google Scholar
  36. 36.
    Wilson, T., Grewal, G., Halley, B., Banerji, D.: An Integrated Approach to Retargetable Code Generation. In: International Symposium on High-Level Synthesis, pp. 70–75 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabriel Hjort Blindell
    • 1
  • Roberto Castañeda Lozano
    • 1
    • 2
  • Mats Carlsson
    • 2
  • Christian Schulte
    • 1
    • 2
  1. 1.SCALE, School of ICTKTH Royal Institute of TechnologyStockholmSweden
  2. 2.SCALESwedish Institute of Computer ScienceKistaSweden

Personalised recommendations