International Conference on Principles and Practice of Constraint Programming

CP 2015: Principles and Practice of Constraint Programming pp 12-29 | Cite as

Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP

  • David Allouche
  • Simon de Givry
  • George Katsirelos
  • Thomas Schiex
  • Matthias Zytnicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9255)

Abstract

We propose Hybrid Best-First Search (HBFS), a search strategy for optimization problems that combines Best-First Search (BFS) and Depth-First Search (DFS). Like BFS, HBFS provides an anytime global lower bound on the optimum, while also providing anytime upper bounds, like DFS. Hence, it provides feedback on the progress of search and solution quality in the form of an optimality gap. In addition, it exhibits highly dynamic behavior that allows it to perform on par with methods like limited discrepancy search and frequent restarting in terms of quickly finding good solutions.

We also use the lower bounds reported by HBFS in problems with small treewidth, by integrating it into Backtracking with Tree Decomposition (BTD). BTD-HBFS exploits the lower bounds reported by HBFS in individual clusters to improve the anytime behavior and global pruning lower bound of BTD.

In an extensive empirical evaluation on optimization problems from a variety of application domains, we show that both HBFS and BTD-HBFS improve both anytime and overall performance compared to their counterparts.

Keywords

Combinatorial optimization Anytime algorithm Weighted constraint satisfaction problem Cost function networks Best-first search Tree decomposition 

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted maxsat solvers. In: Proc. of CP 2012, Québec City, Canada, pp. 86–101 (2012)Google Scholar
  2. 2.
    van den Berg, J., Shah, R., Huang, A., Goldberg, K.: ANA*: Anytime nonparametric A*. In: Proceedings of Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011) (2011)Google Scholar
  3. 3.
    Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Technischen Universität Berlin (2006). urn:nbn:de:0297-zib-10293Google Scholar
  4. 4.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI, vol. 16, p. 146 (2004)Google Scholar
  5. 5.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artificial Intelligence 174(7), 449–478 (2010)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artificial Intelligence 171(2), 73–106 (2007)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local consistency in weighted CSP. In: Proc. of the National Conference on Artificial Intelligence, AAAI 2006, pp. 22–27 (2006)Google Scholar
  8. 8.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th IJCAI, Montréal, Canada (1995)Google Scholar
  9. 9.
    Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artif. Intell. 146(1), 43–75 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving csps. In: Proc. of ECAI 2014, Prague, Czech Republic, pp. 465–470 (2014)Google Scholar
  11. 11.
    Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solving constraint networks. In: Proc. of CP 2014, Lyon, France, pp. 407–423 (2014)Google Scholar
  12. 12.
    Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478–492. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, pp. 84–89, Edinburgh, Scotland (August 2005)Google Scholar
  14. 14.
    Lawler, E., Wood, D.: Branch-and-bound methods: A survey. Operations Research 14(4), 699–719 (1966)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artificial Intelligence 173, 1592–1614 (2009)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems, p. None (2003)Google Scholar
  17. 17.
    Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies for mixed integer programming. INFORMS Journal on Computing 11(2), 173–187 (1999)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. In: Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems, pp. 128–133. IEEE (1993)Google Scholar
  19. 19.
    Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: Proc. of IJCAI 2005, Edinburgh, Scotland, UK, pp. 224–229 (2005)Google Scholar
  20. 20.
    Marinescu, R., Dechter, R.: Best-first AND/OR search for graphical models. In: Proceedings of the National Conference on Artificial Intelligence, pp. 1171–1176. AAAI Press, MIT Press, Menlo Park, Cambridge (1999, 2007)Google Scholar
  21. 21.
    Otten, L., Dechter, R.: Anytime and/or depth-first search for combinatorial optimization. AI Communications 25(3), 211–227 (2012)MATHMathSciNetGoogle Scholar
  22. 22.
    Pearl, J.: Heuristics – Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publishing Comp. (1985)Google Scholar
  23. 23.
    Pohl, I.: Heuristic search viewed as path finding in a graph. Artificial Intelligence 1(3), 193–204 (1970)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Sanchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree decomposition. In: IJCAI, pp. 603–608 (2009)Google Scholar
  26. 26.
    Schulte, C.: Comparing trailing and copying for constraint programming. In: Logic Programming, Las Cruces, New Mexico, USA, pp. 275–289 (1999)Google Scholar
  27. 27.
    Stern, R., Kulberis, T., Felner, A., Holte, R.: Using lookaheads with optimal best-first search. In: AAAI (2010)Google Scholar
  28. 28.
    Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709–723. Springer, Heidelberg (2003) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Allouche
    • 1
  • Simon de Givry
    • 1
  • George Katsirelos
    • 1
  • Thomas Schiex
    • 1
  • Matthias Zytnicki
    • 1
  1. 1.MIAT, UR-875, INRACastanet TolosanFrance

Personalised recommendations