Advertisement

PREFIX-PROJECTION Global Constraint for Sequential Pattern Mining

  • Amina Kemmar
  • Samir Loudni
  • Yahia Lebbah
  • Patrice Boizumault
  • Thierry Charnois
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9255)

Abstract

Sequential pattern mining under constraints is a challenging data mining task. Many efficient ad hoc methods have been developed for mining sequential patterns, but they are all suffering from a lack of genericity. Recent works have investigated Constraint Programming (CP) methods, but they are not still effective because of their encoding. In this paper, we propose a global constraint based on the projected databases principle which remedies to this drawback. Experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P. (eds.) ICDE, pp. 3–14. IEEE Computer Society (1995)Google Scholar
  2. 2.
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: KDD 2002, pp. 429–435. ACM (2002)Google Scholar
  3. 3.
    Béchet, N., Cellier, P., Charnois, T., Crémilleux, B.: Sequential pattern mining to discover relations between genes and rare diseases. In: CBMS (2012)Google Scholar
  4. 4.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Journal of Mathematical and Computer Modelling 20(12), 97–123 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Coquery, E., Jabbour, S., Saïs, L., Salhi, Y.: A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence. In: ECAI, pp. 258–263 (2012)Google Scholar
  6. 6.
    Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.: SPMF: A Java Open-Source Pattern Mining Library. J. of Machine Learning Resea. 15, 3389–3393 (2014)Google Scholar
  7. 7.
    Garofalakis, M.N., Rastogi, R., Shim, K.: Mining sequential patterns with regular expression constraints. IEEE Trans. Knowl. Data Eng. 14(3), 530–552 (2002)CrossRefGoogle Scholar
  8. 8.
    Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: A constraint programming perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kemmar, A., Ugarte, W., Loudni, S., Charnois, T., Lebbah, Y., Boizumault, P., Crémilleux, B.: Mining relevant sequence patterns with cp-based framework. In: ICTAI, pp. 552–559 (2014)Google Scholar
  10. 10.
    Li, C., Yang, Q., Wang, J., Li, M.: Efficient mining of gap-constrained subsequences and its various applications. ACM Trans. Knowl. Discov. Data 6(1), 2:1–2:39 (2012)Google Scholar
  11. 11.
    Métivier, J.P., Loudni, S., Charnois, T.: A constraint programming approach for mining sequential patterns in a sequence database. In: ECML/PKDD Workshop on Languages for Data Mining and Machine Learning (2013)Google Scholar
  12. 12.
    Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305. Springer, Heidelberg (2015) Google Scholar
  13. 13.
    Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research 10 (2009)Google Scholar
  14. 14.
    Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixSpan: Mining sequential patterns by prefix-projected growth. In: ICDE, pp. 215–224. IEEE Computer Society (2001)Google Scholar
  15. 15.
    Pei, J., Han, J., Wang, W.: Mining sequential patterns with constraints in large databases. In: CIKM 202, pp. 18–25. ACM (2002)Google Scholar
  16. 16.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  17. 17.
    Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: EDBT, pp. 3–17 (1996)Google Scholar
  18. 18.
    Trasarti, R., Bonchi, F., Goethals, B.: Sequence mining automata: A new technique for mining frequent sequences under regular expressions. In: ICDM 2008, pp. 1061–1066 (2008)Google Scholar
  19. 19.
    Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large databases. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM (2003)Google Scholar
  20. 20.
    Yang, G.: Computational aspects of mining maximal frequent patterns. Theor. Comput. Sci. 362(1–3), 63–85 (2006)zbMATHCrossRefGoogle Scholar
  21. 21.
    Zaki, M.J.: Sequence mining in categorical domains: Incorporating constraints. In: Proceedings of the 2000 ACM CIKM International Conference on Information and Knowledge Management, McLean, VA, USA, November 6–11, pp. 422–429 (2000)Google Scholar
  22. 22.
    Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1/2), 31–60 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Amina Kemmar
    • 1
  • Samir Loudni
    • 2
  • Yahia Lebbah
    • 1
  • Patrice Boizumault
    • 2
  • Thierry Charnois
    • 3
  1. 1.LITIOUniversity of Oran 1, EPSECG of OranOranAlgeria
  2. 2.GREYC (CNRS UMR 6072)University of CaenCaenFrance
  3. 3.LIPN (CNRS UMR 7030)University PARIS 13VilletaneuseFrance

Personalised recommendations