Skip to main content

The Role of Integrated Omics in Elucidating the Gut Microbiota Health Potentials

  • Chapter

Part of the book series: Microbiology Monographs ((MICROMONO,volume 28))

Abstract

In recent years, DNA sequencing and mass spectrometry technologies have advanced greatly, enabling the collection of more information on the gut microbiome and its metabolome in order to assess the influence of the gut microbiota on human health at a whole-system level. As the gut microbiota has been likened to a functional and measurable organ consisting of prokaryotic cells, which creates the unique gut ecosystem together with the host eukaryotic cells, metagenome and metabolome technologies have demonstrated that the gut microbiota contributes to host overall health status to a great extent. In this chapter, the detailed relationships between gut microbiota and its metabolites like choline, phenols, bile acids and short-chain fatty acids in host health and etiopathogenesis of various metabolic diseases such as obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease and extraintestinal diseases like multiple sclerosis, chronic kidney disease and autism will be discussed. In addition, therapeutic interventions like probiotic and prebiotic administrations and faecal microbiota transplantations which are recently used in dysbiosis restoration will be reviewed. This unique biology-wide approach of integrating metagenome and metabolome information would aid in the better understanding of the intricate interplay between gut microbiota and host metabolism. We believe that this novel integration of the microbiome, metatranscriptome and metabolome information will lay the way towards an improved holistic understanding of the complex mammalian superorganism. This modelling of the metabolic interactions between lifestyle, dietary habits and the gut microbiota, otherwise known as the “integrated omics-based understanding of the gut ecosystem”, will culminate in the comprehensive interpretation of the role and impact of microbial health potentials, thereby providing exciting novel therapeutic approaches for optimal host health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Shanab A, Quigley EM (2010) The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7(12):691–701. doi:10.1038/nrgastro.2010.172

    Article  PubMed  Google Scholar 

  • Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW (2011) Colonic contribution to uremic solutes. J Am Soc Nephrol 22(9):1769–1776. doi:10.1681/ASN.2010121220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. doi:10.1017/S0007114511006957

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341. doi:10.1126/science.1198469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236. doi:10.1038/nature12331

    Article  CAS  PubMed  Google Scholar 

  • Aw W, Fukuda S (2015) Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin Immunopathol 37(1):5–16. doi:10.1007/s00281-014-0456-2

    Article  CAS  PubMed  Google Scholar 

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723. doi:10.1073/pnas.0407076101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belzer C, de Vos WM (2012) Microbes inside--from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458. doi:10.1038/ismej.2012.6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541. doi:10.1038/nature10554

    Article  CAS  PubMed  Google Scholar 

  • Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471. doi:10.3109/03014460.2013.807878

    Article  PubMed  Google Scholar 

  • Bone E, Tamm A, Hill M (1976) The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr 29(12):1448–1457

    CAS  PubMed  Google Scholar 

  • Borody T (2000) “Flora Power” – fecal bacteria cure chronic C. difficile diarrhea. Am J Gastroenterol 95(11):3028–3029. doi:10.1111/j.1572-0241.2000.03306.x

    CAS  PubMed  Google Scholar 

  • Borody T, Warren E, Leis S, Surace R, Ashman O, Siarakas S (2004) Bacteriotherapy using fecal flora toying with human motions. J Clin Gastroenterol 38(6):475–483. doi:10.1097/01.mcg.0000128988.13808.dc

    Article  PubMed  Google Scholar 

  • Buescher J, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82(11):4403–4412. doi:10.1021/ac100101d

    Article  CAS  PubMed  Google Scholar 

  • Buie T, Campbell DB, Fuchs GJ III, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H (2010) Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125(Suppl 1):S1–S18. doi:10.1542/peds.2009-1878C

    Article  PubMed  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. doi:10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. doi:10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  • Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7(4):265–276. doi:10.1016/j.chom.2010.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le Net JL, Baker D, Walley RJ, Everett JR, Nicholson JK (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440(7087):1073–1077. doi:10.1038/nature04648

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88(4):894–899. doi:10.3945/ajcn.2010.29877

    CAS  PubMed  Google Scholar 

  • Cope K, Risby T, Diehl AM (2000) Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 119(5):1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72(10):2533–2542. doi:10.1158/0008-5472.CAN-11-3317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE (2012) Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130(Suppl 2):S160–S168. doi:10.1542/peds.2012-0900N

    Article  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. doi:10.1038/nature12820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis LM, Martinez I, Walter J, Goin C, Hutkins RW (2011) Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 6(9), e25200. doi:10.1371/journal.pone.0025200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1-2):84–96. doi:10.1016/j.cell.2013.12.016

    Article  PubMed  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry based metabolomics. Mass Spectrom Rev 26(1):51–78. doi:10.1002/mas.20108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121. doi:10.1136/gutjnl-2012-303304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526. doi:10.1016/j.cmet.2011.02.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103(33):12511–12516. doi:10.1073/pnas.0601056103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9):1243–1266

    Article  CAS  PubMed  Google Scholar 

  • Everard A, Lazarevic V, Derrien M, Girard M, Muccioli G, Neyrinck A, Possemiers S, Van Holle A, François P, de Vos W, Delzenne N, Schrenzel J, Cani P (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60(11):2775–2786. doi:10.2337/db11-0227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk J, Druart C, Bindels L, Guiot Y, Derrien M, Muccioli G, Delzenne N, de Vos W, Cani P (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071. doi:10.1073/pnas.1219451110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7(4):880–884. doi:10.1038/ismej.2012.153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finegold SM (2008) Therapy and epidemiology of autism--clostridial spores as key elements. Med Hypotheses 70(3):508–511. doi:10.1016/j.mehy.2007.07.019

    Article  PubMed  Google Scholar 

  • Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA III (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453. doi:10.1016/j.anaerobe.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, Downes J, Summanen PH (2012) Microbiology of regressive autism. Anaerobe 18(2):260–262. doi:10.1016/j.anaerobe.2011.12.018

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. doi:10.1152/physrev.00013.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda S, Ohno H (2014) Gut microbiome and metabolic diseases. Semin Immunopathol 36(1):103–114. doi:10.1007/s00281-013-0399-z

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Furuya H, Suzuki Y, Asanuma N, Hino T (2005) A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J Gen Appl Microbiol 51(2):105–113. doi:10.1099/mic.0.022921-0

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Suzuki Y, Murai M, Asanuma N, Hino T (2006) Isolation of a novel strain of Butyrivibrio fibrisolvens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. J Appl Microbiol 100(4):787–794. doi:10.1111/j.1365-2672.2006.02864.x

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547. doi:10.1038/nature09646

    Article  CAS  PubMed  Google Scholar 

  • Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. doi:10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. doi:10.1038/nrgastro.2010.117

    Article  PubMed  Google Scholar 

  • Gibson G, Roberfroid M (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. doi:10.1079/NRR200479

    CAS  PubMed  Google Scholar 

  • Guarner F (2009) Prebiotics, probiotics and helminths: the ‘natural’ solution? Dig Dis 27(3):412–417. doi:10.1159/000228582

    Article  PubMed  Google Scholar 

  • Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, Buschard K, Hansen AK (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55(8):2285–2294. doi:10.1007/s00125-012-2564-7

    Article  CAS  PubMed  Google Scholar 

  • Hawrelak J, Myers S (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9(2):180–197

    PubMed  Google Scholar 

  • Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185. doi:10.1038/nature10809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, Nicholson JK (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4(137):137rv136. doi:10.1126/scitranslmed.3004244

    Article  CAS  Google Scholar 

  • Hooper LV (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118. doi:10.1126/science.1058709

    Article  CAS  PubMed  Google Scholar 

  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. doi:10.1016/j.cell.2013.11.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, Park SY, Yoon HS, Cho GS, Franz CM, Bomba A, Shin HK, Holzapfel WH (2012) Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benefic Microbes 3(1):13–22. doi:10.3920/BM2011.0046

    Article  CAS  Google Scholar 

  • Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105(36):13580–13585. doi:10.1073/pnas.0804437105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalliomäki M, Collado M, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538. doi:10.3945/ajcn.2010.29877

    PubMed  Google Scholar 

  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7), e68322. doi:10.1371/journal.pone.0068322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K (2012a) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20(11):2257–2261. doi:10.1038/oby.2012.110

    Article  PubMed  Google Scholar 

  • Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J (2012b) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245. doi:10.1038/ncomms2266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103. doi:10.1038/nature12198

    Article  CAS  PubMed  Google Scholar 

  • Khoruts A, Dicksved J, Jansson J, Sadowsky M (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360. doi:10.1097/MCG.0b013e3181c87e02

    PubMed  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi:10.1038/ncomms2852

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kinross J, Alkhamesi N, Barton R, Silk D, Yap I, Darzi A, Holmes E, Nicholson J (2011) Global metabolic phenotyping in an experimental laparotomy model of surgical trauma. J Proteome Res 10(1):277–287. doi:10.1021/pr1003278

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen P, Arvola T, Salminen S, Isolauri E (2002) Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut 51(1):51–55. doi:10.1136/gut.51.1.51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585. doi:10.1038/nm.3145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotanko P, Carter M, Levin NW (2006) Intestinal bacterial microflora – a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol Dial Transplant 21(8):2057–2060. doi:10.1093/ndt/gfl281

    Article  PubMed  Google Scholar 

  • Kriegel M, Sefik E, Hill J, Wu H, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108(28):11548–11553. doi:10.1073/pnas.1108924108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2), e9085. doi:10.1371/journal.pone.0009085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(Suppl 1):4615–4622. doi:10.1073/pnas.1000082107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. doi:10.1073/pnas.0504978102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luoto R, Kalliomaki M, Laitinen K, Isolauri E (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes 34(10):1531–1537. doi:10.1038/ijo.2010.50

    Article  CAS  Google Scholar 

  • MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54. doi:10.1016/j.bbr.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Macpherson AJ (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288(5474):2222–2226. doi:10.1126/science.288.5474.2222

    Article  CAS  PubMed  Google Scholar 

  • Marchesi J, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson I, Wang Y (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6(2):546–551. doi:10.1038/icb.2014.31

    Article  CAS  PubMed  Google Scholar 

  • Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088. doi:10.1126/science.1233521

    Article  CAS  PubMed  Google Scholar 

  • Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:157. doi:10.1038/msb4100190

    PubMed Central  PubMed  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286. doi:10.1038/nature08530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntyre CW, Harrison LE, Eldehni MT, Jefferies HJ, Szeto CC, John SG, Sigrist MK, Burton JO, Hothi D, Korsheed S, Owen PJ, Lai KB, Li PK (2011) Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol 6(1):133–141. doi:10.2215/CJN.04610510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Mace K, Chou CJ (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7):2416–2426. doi:10.1096/fj.07-102723

    Article  CAS  PubMed  Google Scholar 

  • Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Masciana R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49(6):1877–1887. doi:10.1002/hep.22848

    Article  CAS  PubMed  Google Scholar 

  • Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K, Tomioka Y, Ito S, Soga T, Abe T (2014) Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD. J Am Soc Nephrol. doi:10.1681/ASN.2014060530

    PubMed Central  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218. doi:10.1104/pp. 106.078428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moschen AR, Kaser S, Tilg H (2013) Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 24:537–545. doi:10.1016/j.tem.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6(6), e20944. doi:10.1371/journal.pone.0020944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM (2012) Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J Nutr Biochem 23(1):51–59. doi:10.1016/j.jnutbio.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. doi:10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  • Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial 15(2):120–124. doi:10.1111/j.1744-9987.2010.00882.x

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183(10):6041–6050. doi:10.4049/jimmunol.0900747

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Fukuda S, Hase K, Nishiumi S, Izumi Y, Yoshida M, Hagiwara T, Kawashima R, Yamazaki M, Oshio T, Otsubo T, Inagaki-Ohara K, Kakimoto K, Higuchi K, Kawamura YI, Ohno H, Dohi T (2013) Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. Nat Commun 4:1654. doi:10.1038/ncomms2668

    Article  PubMed  CAS  Google Scholar 

  • Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106(40):17031–17036. doi:10.1073/pnas.0905299106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ott SJ (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693. doi:10.1136/gut.2003.025403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parnell JA, Reimer RA (2012) Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 107(4) doi:10.1017/S0007114511003163

  • Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(Pt 10):987–991. doi:10.1099/jmm.0.46101-0

    Article  PubMed  Google Scholar 

  • Prawitt J, Abdelkarim M, Stroeve J, Popescu I, Duez H, Velagapudi V, Dumont J, Bouchaert E, van Dijk T, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez F, Oresic M, Cariou B, Kuipers F, Caron S, Staels B (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60(7):1861–1871. doi:10.2337/db11-0030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prentiss P, Rosen H, Brown N, Horowitz R, Malm O, Levenson S (1961) The metabolism of choline by the germfree rat. Arch Biochem Biophys 94:424–429. doi:10.1016/0003-9861(61)90069-8

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. doi:10.1038/nature08821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. doi:10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan N, Patel BG, Ranganathan P, Marczely J, Dheer R, Pechenyak B, Dunn SR, Verstraete W, Decroos K, Mehta R, Friedman EA (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52(1):70–79. doi:10.1097/01.mat.0000191345.45735.00

    Article  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. doi:10.1126/science.1241214

    Article  PubMed  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259. doi:10.1194/jlr.R500013-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M (2007) Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47(4):571–579. doi:10.1016/j.jhep.2007.04.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. doi:10.1038/nri2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabate JM, Jouet P, Harnois F, Mechler C, Msika S, Grossin M, Coffin B (2008) High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg 18(4):371–377. doi:10.1007/s11695-007-9398-2

    Article  PubMed  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105(43):16767–16772. doi:10.1073/pnas.0808567105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, Marti-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104(1):83–92. doi:10.1017/S0007114510000176

    Article  CAS  PubMed  Google Scholar 

  • Satapathy SK, Sanyal AJ (2010) Novel treatment modalities for nonalcoholic steatohepatitis. Trends Endocrinol Metab 21(11):668–675. doi:10.1016/j.tem.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Shanahan F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, Holmes E, Wang Y, Marchesi JR (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798. doi:10.1111/j.1462-2920.2007.01503.x

    Article  CAS  PubMed  Google Scholar 

  • Schepers E, Glorieux G, Vanholder R (2010) The gut: the forgotten organ in uremia? Blood Purif 29(2):130–136. doi:10.1159/000245639

    Article  PubMed  Google Scholar 

  • Sina C, Gavrilova O, Forster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Hasler R, Nikolaus S, Folsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183(11):7514–7522. doi:10.4049/jimmunol.0900063

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139. doi:10.1016/j.immuni.2013.12.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smits L, Bouter K, de Vos W, Borody T, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145(5):946–953

    Article  PubMed  Google Scholar 

  • Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986. doi:10.1053/j.gastro.2010.11.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 108(Suppl 1):4523–4530. doi:10.1073/pnas.1006734107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584. doi:10.1056/NEJMoa1109400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177. doi:10.1016/j.cmet.2009.08.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam Y, Parker H, Habib A, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble F (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371. doi:10.2337/db11-1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres DM, Williams CD, Harrison SA (2012) Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 10(8):837–858. doi:10.1016/j.cgh.2012.03.011

    Article  PubMed  Google Scholar 

  • Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249. doi:10.1038/nature11552

    Article  CAS  PubMed  Google Scholar 

  • Tringe S, Hugenholtz P (2008) A renaissance for the pioneering 16s rrna gene. Curr Opin Microbiol 11(5):442–446. doi:10.1016/j.mib.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  • Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166. doi:10.1038/nm.3444

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. doi:10.1038/nature05414

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. doi:10.1038/nature07540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, Equinda M, Khanin R, Pamer EG (2012) Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 209(8):1445–1456. doi:10.1084/jem.20120504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415. doi:10.1056/NEJMoa1205037

    Article  PubMed  CAS  Google Scholar 

  • Vance D (2008) Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol 19(3):229–234. doi:10.1097/MOL.0b013e3282fee935

    Article  CAS  PubMed  Google Scholar 

  • Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    Article  PubMed  Google Scholar 

  • Vendt N, Grünberg H, Tuure T, Malminiemi O, Wuolijoki E, Tillmann V, Sepp E, Korpela R (2006) Growth during the first 6 months of life in infants using formula enriched with Lactobacillus rhamnosus GG: double-blind, randomized trial. J Hum Nutr Diet 19(1):51–58. doi:10.1159/000185642

    Article  CAS  PubMed  Google Scholar 

  • Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA (2011) Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol 45(2):149–152. doi:10.1097/MCG.0b013e3181e12c24

    Article  CAS  PubMed  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231. doi:10.1126/science.1179721

    Article  CAS  PubMed  Google Scholar 

  • Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916. doi:10.1053/j.gastro.2012.06.031, e917

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. doi:10.1038/nature09922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Zhang P, Jiang H, Cheng S (2012) Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci 57(11):2856–2862. doi:10.1007/s10620-012-2242-0

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489. doi:10.1038/nature04330

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113. doi:10.1038/nature07336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610. doi:10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  • West D, Delany J, Camet P, Blohm F, Truett A, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275(3 Pt 2):667–672. doi:10.1038/sj.ijo.0802304

    Google Scholar 

  • Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 48:206–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106(10):3698–3703. doi:10.1073/pnas.0812874106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI (2011) Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6(9), e24585. doi:10.1371/journal.pone.0024585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams BL, Hornig M, Parekh T, Lipkin WI (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 3(1). doi:10.1128/mBio.00261-11

  • Wostmann B (1973) Intestinal bile acids and cholesterol absorption in the germfree rat. J Nutr 103(7):982–990

    CAS  PubMed  Google Scholar 

  • Xu J, Mahowald M, Ley R, Lozupone C, Hamady M, Martens E, Henrissat B, Coutinho P, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton R, Fulton L, Clifton S, Wilson R, Knight R, Gordon J (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5(7):1574–1586. doi:10.1371/journal.pbio.0050156

    Article  CAS  Google Scholar 

  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101. doi:10.1038/nature12347

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609. doi:10.1002/hep.26093

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aw, W., Fukuda, S. (2015). The Role of Integrated Omics in Elucidating the Gut Microbiota Health Potentials. In: Liong, MT. (eds) Beneficial Microorganisms in Medical and Health Applications. Microbiology Monographs, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-23213-3_4

Download citation

Publish with us

Policies and ethics