Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 28))

  • 1397 Accesses

Abstract

Bifidobacteria are the predominant bacteria in the gastrointestinal tract of an infant. The colonization pattern of the bifidobacteria is affected by mode of delivery and types of feeding. Newborns from vaginal delivery are firstly exposed to maternal vaginal, fecal, and skin bacteria, such as Lactobacillus, Prevotella, and Atopobium. In the few days after birth, a reduced environment in the gastrointestinal tract favors the arrival and proliferation of obligate anaerobic bacteria, such as Bifidobacterium, and subsequently becomes predominant in the infant’s gastrointestinal tract. Also, in breast-fed infants, Bifidobacterium concentration is higher than formula-fed infants as human breast milk contains human milk oligosaccharides (HMOs) which are bifidobacterial growth-promoting factors. In addition to HMOs, existing lysozyme in breast milk could be involved in selection of infant-type Bifidobacterium as inhabitants of the infant intestines. Bifidobacteria colonization in infants initiates the development and maturation of the infant’s naive immune system by stimulating dendritic cells through Toll-like receptors (TLR) and leads to differentiation of naive T lymphocytes into Th1 cells by recognizing the peptidoglycans in bifidobacteria. Hence, immune response, control intestinal inflammation, and mucosal tolerance are initiated. Production of immunoglobulin A (IgA) is also stimulated by the presence of bifidobacteria to stimulate intestinal antigenic ability. Bifidobacteria are able to prevent and treat atopic diseases in infants by restoring Th1/Th2 balance and enhance the production of IFN-γ. In addition, bifidobacteria are also effective in reducing the duration of gastrointestinal diseases by modification and stabilization of GIT microflora, reduction in the duration of retrovirus shedding, reduction of GIT permeability, as well as induction of general immune response by increasing IgA antibodies. In respiratory tract infections, bifidobacteria enhance several immune responses by increasing immune cell activity, modulating signals in epithelial and immune cells, increasing local and systemic antibody production, and inducing phenotypic changes in dendritic cells. Considering that Bifidobacterium are the natural inhabitants of infant intestines, and much clinical evidence of efficacy to infants have been documented, Bifidobacterium strains are highly encouraged for use as probiotics for infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SJ, Okoko B, Martinez EG, Gregorio GV, Dans LF (2009) Probiotics for treating infectious diarrhoea (Review). Cochrane Database of Systematic Reviews 1:1–72

    Google Scholar 

  • Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5:427. doi:10.3389/fimmu.2014.00427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asakuma S, Urashima T, Akahori M, Obayashi H, Nakamura T, Kimura K, Watanabe Y, Arai I, Sanai Y (2008) Variation of major neutral oligosaccharides levels in human colostrum. Eur J Clin Nutr 62:488–494

    Article  PubMed  CAS  Google Scholar 

  • Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286(40):34583–34592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baffoni L, Stenico V, Strahsburger E, Gaggia F, Di Gioia D, Modesto M, Mattarelli P, Biavati B (2013) Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment. BMC Microbiol 13(149):1–9

    Google Scholar 

  • Balamurugan R, Magne F, Balakrishnan D, Suau A, Ramani S, Kang G, Ramakrishna BS (2010) Faecal bifidobacteria in Indian neonates & the effect of asymptomatic rotavirus infection during the first month of life. Indian J Med Res 132:721–727

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bergmann KR, Liu SXL, Tian RL, Kushnir A, Turner JR, Li HL, Chou PM, Weber CR, de Plaen IG (2013) Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 182(5):1595–1606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bifidobacteria. (2014) [Online], [Accessed 7th April 2015]. Available from Natural Medicines Comprehensive Database: httcp://naturaldatabase.therapeuticresearch.com/nd/PrintVersion.aspx?id = 891&AspxAutoDetectCookieSupport = 1

    Google Scholar 

  • Boesten R, Schuren F, Ben Amor K, Haarman M, Knol J, de Vos WM (2011) Bifidobacterium population analysis in the infant gut by direct mapping of genomic hybridization patterns: potential for monitoring temporal development and effects of dietary regimens. Microb Biotechnol 4:417–427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36:775–780

    Article  PubMed  CAS  Google Scholar 

  • Bottacini F, Ventura M, van Sinderen D, O’Connell MM (2014) Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Factories 13:1–15

    Article  Google Scholar 

  • Boyle RJ, Robins-Browne RM, Tang MLK (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83:1256–1264

    PubMed  CAS  Google Scholar 

  • Carbohydrates (2015) [Online], [Accessed 4th April 2015]. Available from European Food Information Council: http://www.eufic.org/article/en/expid/basics-carbohydrates/

  • Chang SH, Park KY, Kang SK, Kang KS, Na SY, Yang HR, Uhm JH, Ryoo E (2013) Prevalence, clinical characteristics, and management of functional constipation at pediatric gastroenterology clinics. J Korean Med Sci 28(9):1356–1361

    Article  PubMed Central  PubMed  Google Scholar 

  • Clinton C (2010) Development of the infant immune function and the effects of breast milk. Nat Med J 2(8):3–6

    Google Scholar 

  • Coccorullo P, Strisciuglio C, Martinelli M, Miele E, Greco L, Staiano A (2010) Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: a double-blind, randomized, placebo-controlled study. J Pediatr 157(4):598–602

    Article  PubMed  Google Scholar 

  • D’Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. Isolated from dairy and pharmaceutical products. Int J Food Microbiol 115(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • De Bruyn F, Beauprez J, Maertens J, Soetaert W, de Mey M (2013) Unraveling the Leloir pathway of Bifidobacterium bifidum: significance of the uridylyltransferases. Appl Environ Microbiol 79(22):7028–7035

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Vrese M, Marteau PR (2007) Probiotics and prebiotics: effects on diarrhea. J Nutr 137:803S–811S

    PubMed  Google Scholar 

  • Dong P, Yang Y, Wang WP (2010) The role of intestinal bifidobacteria on immune system development in young rats. Early Hum Dev 86:51–58

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Enomoto T, Sowa M, Nishimori K, Shimazu S, Yoshida A, Yamada K, Furukawa F, Nakagawa T, Yanagisawa N, Iwabuchi N, Odamaki T, Abe F, Nakayama J, Xiao JZ (2014) Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol Int 63:575–585

    Article  PubMed  CAS  Google Scholar 

  • Esposito S, Rigante D, Principi N (2014) Do children’s upper respiratory tract infections benefit from probiotics? BMC Infect Dis 14(194):1–7

    Google Scholar 

  • Forchielli ML, Walker WA (2005) The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 93:41–48

    Article  CAS  Google Scholar 

  • Fox MJ, Ahuja KDK, Robertson IK, Ball MJ, Eri RD (2015) Can probiotic yogurt prevent diarrhea in children on antibiotics? A double-blind, randomized, placebo-controlled study. BMJ Open 5, e006474

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K (2005) Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem 280:37415–37422

    Article  PubMed  CAS  Google Scholar 

  • Fushinobu S (2010) Unique sugar metabolic pathways of bifidobacteria. Biosci Biotechnol Biochem 74(12):2374–2384

    Article  PubMed  CAS  Google Scholar 

  • Gagnon M, Kheadr EE, Le Blay G, Fliss I (2004) In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. Int J Food Microbiol 92:69–78

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill HS, Prasad J, Donkor O (2012) Probiotics and human immune function. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria. CRC Press, Boca Raton, FL, pp 439–508

    Google Scholar 

  • Glendinning L, Free A (2014) Supra-organismal interactions in the human intestine. Cell Infect Microbiol 4(47):1–4

    Google Scholar 

  • Goehring KC, Kennedy AD, Prieto PA, Buck RH (2014) Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One 9(7):1–11

    Article  CAS  Google Scholar 

  • Greer FR, Sicherer SH, Burks AW (2008) Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyze formulas. Pediatrics 121(1):183–191

    Article  PubMed  Google Scholar 

  • Grimm V, Westermann C, Riedel CU (2014) Bifidobacteria-host interactions – an update on colonization factors. BioMed Res Int 2014:1–10

    Article  Google Scholar 

  • Grönlund MM, Gueimonde M, Laitinen K, Kociubinski G, Grönroos T, Salminen S, Isolauri E (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37:1764–1772

    Article  PubMed  Google Scholar 

  • Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92:64–66

    Article  PubMed  Google Scholar 

  • Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4(202):1–6

    Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    Article  PubMed  CAS  Google Scholar 

  • Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9(2):180–197

    PubMed  Google Scholar 

  • Holzapfel WH (2006) Introduction to prebiotics and probiotics. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. CRC Press, Boca Raton, FL, pp 1–33

    Google Scholar 

  • Horvath A, Chmielewska A, Szajewska H (2013) Functional constipation in children: a follow-up of two randomized controlled trials. Pediatr Pol 88(3):219–223

    Article  Google Scholar 

  • Ishibashi N, Yaeshima T, Hayasawa H (1997) Bifidobacteria: their significance in human intestinal health. Mal J Nutr 3:149–159

    Google Scholar 

  • Jantscher-Krenn E, Bode L (2012) Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr 64(1):83–99

    PubMed  CAS  Google Scholar 

  • Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D (2014) The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12. Microorganisms 2:92–110

    Article  CAS  Google Scholar 

  • Kappelman MD, Grand RJ (2008) Does inflammatory bowel disease develop in infants? Inflamm Bowel Dis 14(02):S6–S8

    Article  PubMed Central  PubMed  Google Scholar 

  • Katayama T, Fujita K, Yamamoto K (2005) Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 99:457–465

    Article  PubMed  CAS  Google Scholar 

  • Katayama T, Wada J, Fujita K, Kiyohara M, Ashida H, Yamamoto K (2008) Functions of novel glycosidases isolated from bifidobacteria. J Appl Glycosci 55:101–109

    Article  CAS  Google Scholar 

  • Kawasaki S (2011) Response of Bifidobacterium species to oxygen. In: Sonomoto K, Yokota A (eds) Lactic acid bacteria and bifidobacteria: current progress in advanced research. Caister Academic, Norfolk, pp 103–110

    Google Scholar 

  • Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622:58–69

    Article  PubMed  CAS  Google Scholar 

  • Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, Dvorak B (2009) Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 297(5):G940–G949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khokhlova EV, Smeianov VV, Efimov BA, Kafarskaia LI, Pavlova SI, Shkoporov AN (2012) Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol Immunol 56:27–39

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  PubMed  CAS  Google Scholar 

  • Kim NY, Ji GE (2012) Effects of probiotics on the prevention of atopic dermatitis. Korean J Pediatr 55(6):193–201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kirjavainen PV, Arvola T, Salminen SJ, Isolauri E (2002) Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut 51:51–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kitaoka M (2012) Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr 3:422S–429S

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kitaoka M, Tian J, Nishimoto M (2005) Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 71:3158–3162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kobata A (2010) Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 86:731–747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JH, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74(3):378–416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lehtoranta L, Kalima K, He L, Lappalainen M, Roivainen M, Narkio M, Makela M, Siitonen S, Korpela R, Pitkaranta A (2014) Specific probiotics and virological findings in symptomatic conscripts attending military service in Finland. J Clin Virol 60(3):276–281

    Article  PubMed  Google Scholar 

  • Léké A, Romond MB, Mullié C (2007) Insights in the human bifidobacterial flora through culture-dependent and independent techniques. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in Applied Microbiology. Formatex, Badajo, pp 758–765

    Google Scholar 

  • Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC (2009) Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124:e172–e179

    Article  PubMed  Google Scholar 

  • Liong MT (2008) Safety of probiotics: translocation and infection. Nutr Rev 66(4):192–202

    Article  PubMed  Google Scholar 

  • Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 271:33325–33334

    Article  PubMed  CAS  Google Scholar 

  • Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S–1543S

    PubMed  Google Scholar 

  • Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H, Sakai T, Oishi K, Martin R, Ben-Amor K, Oozeer R, Knol J, Tanaka R (2011) Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 77(19):6788–6793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, Oishi K, Martin R, Ben-Amor K, Knol J, Tanaka R (2013) Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One 8(11):1–10

    Google Scholar 

  • Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4(6):603–611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez FAC, Balciunas EM, Converti A, Cotter PD, De Souza Oliveira RP (2013) Bacteriocin production by Bifidobacterium spp. a review. Biotechnol Adv 31:482–488

    Article  PubMed  CAS  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214

    Article  PubMed  CAS  Google Scholar 

  • Matteuzzi D, Crociani F, Zani O, Trovatelli LD (1971) Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. J Basic Microbiol 11(5):387–395

    CAS  Google Scholar 

  • Ménard O, Butel MJ, Gaboriau-Routhiau V, Waligora-Dupriet AJ (2007) Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol 74(3):660–666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meneghin F, Fabiano V, Mameli C, Zuccotti GV (2012) Probiotics and atopic dermatitis in children. Pharmaceuticals 5:727–744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Michail S (2009) The role of probiotics in allergic diseases. Allergy Asthma Clin Immunol 5(5):1–7

    Google Scholar 

  • Mikami K, Takahashi H, Kimura M, Isozaki M, Izuchi K, Shibata R, Sudo N, Matsumoto H, Koga Y (2009) Influence of maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr Res 65(6):669–674

    Article  PubMed  Google Scholar 

  • Mikami K, Kimura M, Takahashi H (2012) Influence of maternal bifidobacteria on the development of gut bifidobacteria in infants. Pharmaceuticals 5:629–642

    Article  PubMed Central  PubMed  Google Scholar 

  • Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, Sanchez B, Viappiani A, Mancabelli L, Taminiau B, Delcenserie V, Barrangou R, Margolles A, van Sinderen D, Ventura M (2014) Genome encyclopaedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 80:6290–6302

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitsuoka T, Kaneuchi C (1977) Ecology of the bifidobacteria. Am J Clin Nutr 30:1799–1810

    PubMed  CAS  Google Scholar 

  • Morelli L, Patrone V (2014) Probiotic microorganisms for shaping the human gut microbiota – mechanisms and efficacy into the future. In: Tuohy K, Del Rio D (eds) Diet-microbe interactions in the gut: effects on human health and disease. Academic, London, pp 27–39

    Google Scholar 

  • Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Mugie SM, Benninga MA, Lorenzo CD (2011) Epidemiology of constipation in children and adults: a systematic review. Best Pract Res Clin Gastroenterol 25(1):3–18

    Article  PubMed  Google Scholar 

  • Namba K, Hatano M, Yaeshima T, Takase M, Suzuki K (2010) Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol Biochem 74(5):939–945

    Article  PubMed  CAS  Google Scholar 

  • Narayan SS, Jalgaonkar S, Shahani S, Kulkarni VN (2010) Probiotics: current trends in the treatment of diarrhea. Hong Kong Med J 16:213–218

    PubMed  Google Scholar 

  • Nishimoto M, Kitaoka M (2007a) Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211). Biosci Biotechnol Biochem 71:1587–1591

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto M, Kitaoka M (2007b) Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 73:6444–6449

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olvera RN, Gutiérrez NA, Azaola EA, Mayorga RL (2013) Characterisation of a Bifidobacterium sp. strain isolated from human faeces and its expression of the ack and ldh genes. Afr J Microbiol Res 7(50):5713–5718

    CAS  Google Scholar 

  • Palframan RJ, Gibson GR, Rastall RA (2003) Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 4:71–75

    PubMed  CAS  Google Scholar 

  • Patole S, Keil AD, Chang A, Nathan E, Doherty D, Simmer K, Esvaran M, Conway P (2014) Effect of Bifidobacterium breve M-16V supplementation on fecal bifidobacteria in preterm neonates--a randomised double blind placebo controlled trial. PLoS One 9(3):e89511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, Reuteler G, Dayer-Schneider J, Mueller C, Blum S (2011) Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol 17(4):459–469

    Article  PubMed Central  PubMed  Google Scholar 

  • Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512

    Article  PubMed  CAS  Google Scholar 

  • Podolsky DK (1985) Oligosaccharide structures of human colonic mucin. J Biol Chem 260:8262–8271

    PubMed  CAS  Google Scholar 

  • Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6:285–306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B (2014) The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res 76:2–10

    Article  PubMed  Google Scholar 

  • Rada V, Splichal I, Rockova S, Grmanova M, Vlkova E (2010) Susceptibility of bifidobacteria to lysozyme as a possible selection criterion for probiotic bifidobacterial strains. Biotechnol Lett 32:451–455

    Article  PubMed  CAS  Google Scholar 

  • Riera CM, Maccioni M, Sotomayor CE (2003) The role of the immune system. In: Fuller R, Perdigón G (eds) Gut flora, nutrition, immunity and health. Blackwell, Great Britain, pp 99–136

    Google Scholar 

  • Rigottier-Gois L (2013) Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7:1256–1261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7(4), e34938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ročková Š, Rada V, Havlik J, Švejstil R, Vlková E, Bunešová V, Janda K, Profousová I (2013) Growth of bifidobacteria in mammalian milk. Czech J Anim Sci 58:99–105

    Google Scholar 

  • Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341

    Article  PubMed  CAS  Google Scholar 

  • Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A (2015) The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res Int 2015:505878. doi:10.1155/2015/505878

    Article  PubMed Central  PubMed  Google Scholar 

  • Salari P, Nikfar S, Abdollahi M (2012) A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflamm Allergy 11:3–14

    Article  CAS  Google Scholar 

  • Sam I-C, Abdul-Murad A, Karunakaran R, Rampal S, Chan Y-F, Nathan AM, Ariffin H (2010) Clinical features of Malaysian children hospitalized with community-acquired seasonal influenza. Int J Infect Dis 14S:e36–e40

    Article  Google Scholar 

  • Sanders ME, Akkermans LMA, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D, Phothirath P, Solano-Aguilar G, Vaughan E (2010) Safety assessment of probiotics for human use. Gut Microorgan 1(3):164–185

    Article  Google Scholar 

  • Sani MN, Khodadad A, Fallahi GH, Farahmand F, Motamed F, Sobhani M (2008) Inflammatory bowel disease in infancy. Govaresh 13(1):48–53

    Google Scholar 

  • Sartor RB, Mazmanlan SK (2012) Intestinal microbes in inflammatory bowel diseases. Am J Gastroenterol Suppl 1:15–21

    Article  CAS  Google Scholar 

  • Sato T, Iino T (2010) Genetic analyses of the antibiotic resistance of Bifidobacterium bifidum strain Yakult YIT 4007. Int J Food Microbiol 137(2–3):254–258

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Shinohara K, Umezaki H, Umezaki H, Shoji H, Satoh H, Ohtsuka Y, Shiga S, Nagata S, Shimizu T, Yamashiro Y (2007) Bifidobacteria prevents necrotizing enterocolitis and infection in preterm infants. Int J Probiotics Prebiotics 2:149–154

    Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Am Physiol Soc 90:859–904

    CAS  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen M-C, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99(22):14422–14427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Article  PubMed  CAS  Google Scholar 

  • Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, Salinas-Riester G, Böck A, Alpert C, Blaunt M, Polson SC, Brandl L, Kirchner T, Greten FR, Polson SW, Arkan MC (2014) High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514:508–514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sela DA, Mills DA (2011) Nursing our microbiota molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18:298–307

    Article  CAS  Google Scholar 

  • Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS 105(48):18964–18969

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shu Q, Qu F, Gill HS (2001) Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Simonsen L, Viboud C, Taylor RJ, Miller MA (2011) The epidemiology of influenza and its control. In: Del Giudice G, Rappuoli R (eds) Influenza vaccines for the future, 2nd edn, Birkhauser advances in infectious diseases series. Springer, London, pp 27–54

    Chapter  Google Scholar 

  • Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E (2009) Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 39:518–526

    Article  PubMed  Google Scholar 

  • Solis G, de los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M (2010) Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16:307–310

    Article  PubMed  CAS  Google Scholar 

  • Stone KD (2003) Atopic diseases of childhood. Curr Opin Pediatr 14(5):634–646

    Article  Google Scholar 

  • Suzuki R, Wada J, Katayama T, Fushinobu S, Wakagi T, Shoun H, Sugimoto H, Tanaka A, Kumagai H, Ashida H, Kitaoka M, Yamamoto K (2008) Structural and thermodynamic analyses of solute-binding protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 283:13165–13173

    Article  PubMed  CAS  Google Scholar 

  • Szajewska H (2012) Human studies on probiotics: infants and children. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria. CRC Press, Boca Raton, FL, pp 525–541

    Google Scholar 

  • Szczawinska-Poplonyk A (2012) Development of mucosal immunity in children: a rationale for sublingual immunotherapy? J Allergy. doi:10.1155/2012/492761

    Google Scholar 

  • Tabbers MM, de Milliano I, Roseboom MG, Benninga MA (2011) Is Bifidobacterium breve effective in the treatment of childhood constipation? Results from a pilot study. Nutr J 10(19):1–5

    Google Scholar 

  • Taipale T, Pienihäkkinen K, Isolauri E, Larsen C, Brockmann E, Alanen P, Jokela J, Söderling E (2011) Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy. Br J Nutr 105:409–416

    Article  PubMed  CAS  Google Scholar 

  • Taniuchi S, Hattori K, Yamamoto A, Sasai M, Hatano Y, Kojima T, Kobayashi Y, Iwamoto H, Yaeshima T (2005) Administration of Bifidobacterium to infants with atopic dermatitis: changes in fecal microflora and clinical symptoms. J Appl Res 5:387–396

    Google Scholar 

  • Tannock GW (1999) Identification of Lactobacilli and Bifidobacteria. Curr Issues Mol Biol 1(1):53–64

    PubMed  CAS  Google Scholar 

  • Toh ZQ, Anzela A, Tang MLK, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3(171):1–14

    Google Scholar 

  • Tomosada Y, Villena J, Murata K, Chiba E, Shimazu T, Aso H, Iwabuchi N, Xiao JZ, Saito T, Kitazawa H (2013) Immunoregulatory effect of bifidobacteria strains in porcine intestinal epithelial cells through modulation of ubiquitin-editing enzyme A20 expression. PLoS One 8, e59259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tregoning JS, Schwarze J (2010) Respiratory viral infections in infants: causes, clinical symptoms, virology and immunology. Clin Microbiol Rev 23(1):74–98

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sánchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly B, van Sinderen D, Ventura M (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. PNAS 107(45):19514–19519

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O’Toole PW, Van Sinderen D, Marchesi JR, Ventura M (2012) Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7(5):1–12

    Article  CAS  Google Scholar 

  • Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 5(437):1–8

    Google Scholar 

  • Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M, Tancredi DJ, Mills DA (2013) A comparison of two probiotic strains of bifidobacteria in premature infants. J Pediatr 163:1585–1591

    Article  PubMed  CAS  Google Scholar 

  • Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT (2012) The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 3:473S–482S

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uslu N, Usta Y, Balamtekin N, Demir H, Saltik-Temizel IN, Yüce A (2009) Inflammatory bowel disease in infancy. Indian J Gastroenterol 28(6):224–226

    Article  PubMed  Google Scholar 

  • van der Aa LB, Heymans HS, van Aalderen WM, Sillevis Smitt JH, Knol J, Ben Amor K, Goossens DA, Sprikkelman AB (2010) Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy 40:795–804

    PubMed  Google Scholar 

  • van der Aa LB, van Aalderen WM, Heymans HS, Henk Sillevis Smitt J, Nauta AJ, Knippels LM, Ben Amor K, Sprikkelman AB (2011) Synbiotics prevent asthma-like symptoms in infants with atopic dermatitis. Allergy 66:170–177

    Article  PubMed  Google Scholar 

  • Vebø HC, Sekelja M, Nestestog R, Storrø O, Johnsen R, Øien T, Rudi K (2011) Temporal development of the infant gut microbiota in immunoglobulin E-sensitized and nonsensitized children determined by the GA-map infant array. Clin Vaccine Immunol 18(8):1326–1335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ventura M, Turroni F, van Sinderen D (2012a) Bifidobacteria: general overview on ecology, taxanomy, and genomics. In: Salminen S, von Wright A, Lahtinen S, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Boca Raton, FL, pp 147–164

    Google Scholar 

  • Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D (2012b) Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol 20(10):467–476

    Article  PubMed  CAS  Google Scholar 

  • Vouloumanou EK, Makris GC, Karageorgopoulos DE, Falagas ME (2008) Probiotics for the prevention of respiratory tract infections: a systemic review. Int J Antimicrob Agents 34:197.e1–197.e10

    Google Scholar 

  • Vouloumanou EK, Makris GC, Karageogopoulos DE, Falagas ME (2009) Probiotics for the prevention of respiratory tract infections: a systematic review. Int J Antimicrob Agents 343:e191–e110

    Google Scholar 

  • Wada J, Suzuki R, Fushinobu S, Kitaoka M, Wakagi T, Shoun H, Ashida H, Kumagai H, Katayama T, Yamamoto K (2007) Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217. Acta Crystallogr 63:751–753

    CAS  Google Scholar 

  • Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M, Kumagai H, Katayama T, Yamamoto K (2008) Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74:3996–4004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker CL, Perin J, Aryee MJ, Boshi-Pinto C, Black RE (2012) Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review. BMC Public Health 12(220):1–7

    Google Scholar 

  • Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB (2007) In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 51:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska E, Bielecka M, Markiewicz L (2003) Numerical analysis of biochemical and morphological features of bifidobacteria as a tool for species characteristic and identification. Polish J Food Nutr Sci 12(53):149–156

    CAS  Google Scholar 

  • Weber TK, Polanco I (2012) Gastrointestinal microbiota and some children diseases: a review. Gastroenterol Res Pract. doi:10.1155/2012/676585

    PubMed Central  PubMed  Google Scholar 

  • Weizman Z, Asli G, Alsheikh A (2005) Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics 115:5–9

    PubMed  Google Scholar 

  • World Gastroenterology Organisation (2008) Probiotics and prebiotics. World Gastroenterology Organisation Practice Guideline 1–22

    Google Scholar 

  • Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, Miyaji K, Iwatsuki K, Togashi H, Enomoto K, Enomoto T (2006) Probiotics in the treatment of Japanese cedar pollinosis: a double-blind placebo-controlled trial. Clin Exp Allergy 36:1425–1435

    Article  PubMed  CAS  Google Scholar 

  • Xiao JZ, Kondo S, Takahashi N, Odamaki T, Iwabuchi N, Miyaji K, Iwatsuki K, Enomoto T (2007) Changes in plasma TARC levels during Japanese cedar pollen season and relationships with symptom development. Int Arch Allergy Immunol 144(2):123–127

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K, Kitaoka M (2010) Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76:54–59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yeşilova Y, Çalka Ö, Akdeniz N, Berktaş M (2012) Effect of probiotics on the treatment of children with atopic dermatitis. Ann Dermatol 24(2):189–193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida Y, Seki T, Matsunaka H, Watanabe T, Shindo M, Yamada N, Yamamoto O (2010) Clinical effects of probiotic Bifidobacterium breve supplementation in adult patients with atopic dermatitis. Yonago Acta Med 53:37–45

    Google Scholar 

Download references

Acknowledgment

This work was supported by the grant (304/PTEKIND/650689) provided by Morinaga Milk Industry Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Sie-Yik Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lau, A.SY., Xiao, JZ., Liong, MT. (2015). Bifidobacterium for Infants: Essence and Efficacy. In: Liong, MT. (eds) Beneficial Microorganisms in Medical and Health Applications. Microbiology Monographs, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-23213-3_3

Download citation

Publish with us

Policies and ethics