Skip to main content

Health Effects of Pro- and Prebiotics: Utilization of Sophisticated In Vitro Tools

  • Chapter
  • 1343 Accesses

Part of the book series: Microbiology Monographs ((MICROMONO,volume 28))

Abstract

This chapter is a summary of my keynote lecture given during the International Conference on Beneficial Microbes in Penang, Malaysia, from 27 to 29 May 2014. It describes the use of sophisticated dynamic, computer-controlled in vitro models of the gastrointestinal (GI) tract, developed by the Dutch Organization for Applied Scientific Research (TNO), nicknamed TIM. Among others, these have been used for determining and predicting survival of probiotics and the effects of prebiotics on the composition and activity of the gut microbiota. These sophisticated multicompartmental models closely mimic the dynamic conditions in the gastrointestinal (GI) tract and are therefore perfect tools to study mechanistically what happens in the GI tract. They can be used to study and optimize survival of probiotic strains and to screen for, e.g., an efficacious dose of prebiotics. Some examples on their use in optimizing probiotic survival, for instance, by combining them with prebiotics or developing a protective coating, are given. Also, the use of stable isotope-labeled substrates to trace metabolism of the gut microbiota as a tool to decipher what is going on in the colon is highlighted. Specific labeling of members of the microbiota and cross feeding are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23(1):37–46. doi:10.1017/S0954422410000090, S0954422410000090 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K (2014) In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS One 9(11), e113864. doi:10.1371/journal.pone.0113864, PONE-D-14-28411 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Binsl TW, De Graaf AA, Venema K, Heringa J, Maathuis A, De Waard P, Van Beek JH (2010) Measuring non-steady-state metabolic fluxes in starch-converting faecal microbiota in vitro. Benef Microbes 1(4):391–405. doi:10.3920/BM2010.0038, D57673QJ77444283 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Blatchford P, Ansell J, de Godoy MRC, Fahey G, Garcia-Mazcorro JF, Gibson GR, Goh YJ, Hotchkiss AT, Hutkins R, Lacroix C, Rastall RA, Reimer R, Schoterman M, van Sinderen D, Venema K, Whelan K (2014) Prebiotic mechanisms, functions and applications. Int J Probiotics Prebiotics 8:109–132

    Google Scholar 

  • Bussolo CS, Roeselers G, Troost FJ, Jonkers DM, Koenen ME, Venema K (2014) Prebiotic effects of cassava bagasse in TNO’s in vitro model of the colon in lean versus obese microbiota. J Funct Foods 11:210–220

    Article  Google Scholar 

  • Costabile A, Kolida S, Klinder A, Gietl E, Bauerlein M, Frohberg C, Landschutze V, Gibson GR (2010) A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 104(7):1007–1017. doi:10.1017/S0007114510001571, S0007114510001571 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W (2009) In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. J Agric Food Chem 57(18):8488–8495. doi:10.1021/jf902549e

    Article  CAS  PubMed  Google Scholar 

  • de Graaf AA, Venema K (2008) Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol 53:73–168. doi:10.1016/S0065-2911(07)53002-X, S0065-2911(07)53002-X [pii]

    Article  PubMed  Google Scholar 

  • de Graaf AA, Maathuis A, de Waard P, Deutz NE, Dijkema C, de Vos WM, Venema K (2010) Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed 23(1):2–12. doi:10.1002/nbm.1418

    Article  PubMed  Google Scholar 

  • de Moreno de LeBlanc A, LeBlanc JG (2014) Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 20(44):16518–16528. doi:10.3748/wjg.v20.i44.16518

    Article  PubMed Central  PubMed  Google Scholar 

  • Eeckhaut V, Ducatelle R, Sas B, Vermeire S, Van Immerseel F (2014) Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics. Gut 63(2):367. doi:10.1136/gutjnl-2013-305293, gutjnl-2013-305293 [pii]

    PubMed  Google Scholar 

  • Egert M, de Graaf AA, Smidt H, de Vos WM, Venema K (2006) Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 14(2):86–91. doi:10.1016/j.tim.2005.12.007, S0966-842X(05)00338-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Egert M, de Graaf AA, Maathuis A, de Waard P, Plugge CM, Smidt H, Deutz NE, Dijkema C, de Vos WM, Venema K (2007) Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microbiol Ecol 60(1):126–135. doi:10.1111/j.1574-6941.2007.00281.x, FEM281 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Falony G, Lazidou K, Verschaeren A, Weckx S, Maes D, De Vuyst L (2009) In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl Environ Microbiol 75(2):454–461. doi:10.1128/AEM.01488-08, AEM.01488-08 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food: joint FAO/WHO working group meeting, London, Ontario, Canada, 30 April–1 May 2002

    Google Scholar 

  • Fassler C, Arrigoni E, Venema K, Brouns F, Amado R (2006) In vitro fermentability of differently digested resistant starch preparations. Mol Nutr Food Res 50(12):1220–1228. doi:10.1002/mnfr.200600106

    Article  CAS  PubMed  Google Scholar 

  • Foolad N, Armstrong AW (2014) Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children. Benef Microbes 5(2):151–160. doi:10.3920/BM2013.0034, 53H72643412K2P18 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 5(1):3–17. doi:10.3920/BM2012.0065, Y4415R00172218Q7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275. doi:10.1079/NRR200479, S0954422404000204 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Grabitske HA, Slavin JL (2009) Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr 49(4):327–360. doi:10.1080/10408390802067126, 908821660 [pii]

    Article  CAS  PubMed  Google Scholar 

  • He T, Venema K, Priebe MG, Welling GW, Brummer RJ, Vonk RJ (2008) The role of colonic metabolism in lactose intolerance. Eur J Clin Invest 38(8):541–547. doi:10.1111/j.1365-2362.2008.01966.x, ECI1966 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Henry SM (1996) Review: phenotyping for Lewis and secretor histo-blood group antigens. Immunohematology 12(2):51–61

    CAS  PubMed  Google Scholar 

  • Hertzler SR, Savaiano DA (1996) Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am J Clin Nutr 64(2):232–236

    CAS  PubMed  Google Scholar 

  • Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75(3):944–953. doi:10.1172/JCI111795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kemgang TS, Kapila S, Shanmugam VP, Kapila R (2014) Cross-talk between probiotic lactobacilli and host immune system. J Appl Microbiol 117(2):303–319. doi:10.1111/jam.12521

    Article  CAS  PubMed  Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335. doi:10.1038/nrmicro2746, nrmicro2746 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovatcheva-Datchary P, Egert M, Maathuis A, Rajilic-Stojanovic M, de Graaf AA, Smidt H, de Vos WM, Venema K (2009) Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11(4):914–926. doi:10.1111/j.1462-2920.2008.01815.x, EMI1815 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lau S (2014) Oral application of bacterial lysate in infancy diminishes the prevalence of atopic dermatitis in children at risk for atopy. Benef Microbes 5(2):147–149. doi:10.3920/BM2013.0007, 7V8L820P32562415 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lied GA, Lillestol K, Lind R, Valeur J, Morken MH, Vaali K, Gregersen K, Florvaag E, Tangen T, Berstad A (2011) Perceived food hypersensitivity: a review of 10 years of interdisciplinary research at a reference center. Scand J Gastroenterol 46(10):1169–1178. doi:10.3109/00365521.2011.591428

    Article  PubMed  Google Scholar 

  • López MG, Urías-Silvas JE (2007) Agave fructans as prebiotics. In: Norio S, Noureddine B, Shuichi O (eds) Recent advances in fructooligosaccharides research. Research Signpost, Kerala, India, pp 297–310

    Google Scholar 

  • Maathuis A, Hoffman A, Evans A, Sanders L, Venema K (2009) The effect of the undigested fraction of maize products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J Am Coll Nutr 28(6):657–666, 28/6/657 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Maathuis AJ, van den Heuvel EG, Schoterman MH, Venema K (2012) Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. J Nutr 142(7):1205–1212. doi:10.3945/jn.111.157420, jn.111.157420 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mäkivuokko H, Wacklin P, Koenen ME, Laamanen K, Alakulppi N, Venema K, Mättö J (2012) Isolation of bifidobacteria for blood group secretor status targeted personalised nutrition. Microb Ecol Health Dis 23:18578, http://dx.doi.org/18510.13402/mehd.v18523i18570.18578

    Google Scholar 

  • Mansfield JA, Bergin SW, Cooper JR, Olsen CH (2014) Comparative probiotic strain efficacy in the prevention of eczema in infants and children: a systematic review and meta-analysis. Mil Med 179(6):580–592. doi:10.7205/MILMED-D-13-00546

    Article  PubMed  Google Scholar 

  • Mardini HE, Grigorian AY (2014) Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis 20(9):1562–1567. doi:10.1097/MIB.0000000000000084

    Article  PubMed  Google Scholar 

  • Marteau P, Minekus M, Havenaar R, Huis in’t Veld JH (1997) Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci 80(6):1031–1037. doi:10.3168/jds.S0022-0302(97)76027-2, S0022-0302(97)76027-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284(37):24673–24677. doi:10.1074/jbc.R109.022848, R109.022848 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez RC, Aynaou AE, Albrecht S, Schols HA, De Martinis EC, Zoetendal EG, Venema K, Saad SM, Smidt H (2011) In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12. Int J Food Microbiol 149(2):152–158. doi:10.1016/j.ijfoodmicro.2011.06.010, S0168-1605(11)00347-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Martinez RC, Cardarelli HR, Borst W, Albrecht S, Schols H, Gutierrez OP, Maathuis AJ, de Melo Franco BD, De Martinis EC, Zoetendal EG, Venema K, Saad SM, Smidt H (2013) Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 84(1):110–123. doi:10.1111/1574-6941.12041

    Article  CAS  PubMed  Google Scholar 

  • McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, Muegge BD, Henrissat B, Hettich RL, Gordon JI (2013) Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 11(8), e1001637. doi:10.1371/journal.pbio.1001637, PBIOLOGY-D-13-01192 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meijerink M, Mercenier A, Wells JM (2013) Challenges in translational research on probiotic lactobacilli: from in vitro assays to clinical trials. Benef Microbes 4(1):83–100. doi:10.3920/BM2012.0035, N4R08L76236U5022 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mekkes MC, Weenen TC, Brummer RJ, Claassen E (2014) The development of probiotic treatment in obesity: a review. Benef Microbes 5(1):19–28. doi:10.3920/BM2012.0069, F7804HT630M53886 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mills S, Stanton C, Fitzgerald GF, Ross RP (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Fact 10(Suppl 1):S19. doi:10.1186/1475-2859-10-S1-S19, 1475-2859-10-S1-S19 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Minekus M (1998) Development and validation of a dynamic model of the gastrointestinal tract. Ph.D. thesis, Utrecht University, Utrecht

    Google Scholar 

  • Minekus M, Marteau P, Havenaar R, Huis in’t Veld JHJ (1995) A multi compartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern Lab Anim 23:197–209

    Google Scholar 

  • Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis in’t Veld JH (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53(1):108–114

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Masuoka N, Kano M, Iizuka R (2014) Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef Microbes 5(2):121–128. doi:10.3920/BM2012.0066, 14R282K2WR45KJ0N [pii]

    Article  CAS  PubMed  Google Scholar 

  • Parker R (2014) Probiotic guideline for necrotizing enterocolitis prevention in very low-birth-weight neonates. Adv Neonatal Care 14(2):88–95. doi:10.1097/ANC.0000000000000043, 00149525-201404000-00006 [pii]

    Article  PubMed  Google Scholar 

  • Pasman W, Wils D, Saniez MH, Kardinaal A (2006) Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy men. Eur J Clin Nutr 60(8):1024–1034. doi:10.1038/sj.ejcn.1602418, 1602418 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Paton AW, Morona R, Paton JC (2012) Bioengineered microbes in disease therapy. Trends Mol Med 18(7):417–425. doi:10.1016/j.molmed.2012.05.006, S1471-4914(12)00082-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ravcheev DA, Godzik A, Osterman AL, Rodionov DA (2013) Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14:873. doi:10.1186/1471-2164-14-873, 1471-2164-14-873 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR (2003) New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37(2):105–118

    Article  PubMed  Google Scholar 

  • Remus DM, Kleerebezem M, Bron PA (2011) An intimate tete-a-tete - how probiotic lactobacilli communicate with the host. Eur J Pharmacol 668(Suppl 1):S33–S42. doi:10.1016/j.ejphar.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  • Sarbini SR, Kolida S, Naeye T, Einerhand A, Brison Y, Remaud-Simeon M, Monsan P, Gibson GR, Rastall RA (2011) In vitro fermentation of linear and alpha-1,2-branched dextrans by the human fecal microbiota. Appl Environ Microbiol 77(15):5307–5315. doi:10.1128/AEM.02568-10, AEM.02568-10 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shanahan F, Dinan TG, Ross P, Hill C (2012) Probiotics in transition. Clin Gastroenterol Hepatol 10(11):1220–1224. doi:10.1016/j.cgh.2012.09.020, S1542-3565(12)01090-7 [pii]

    Article  PubMed  Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435. doi:10.3390/nu5041417, nu5041417 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsilingiri K, Rescigno M (2013) Postbiotics: what else? Benef Microbes 4(1):101–107. doi:10.3920/BM2012.0046, HM73405H773N76T7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • van Bergenhenegouwen J, Kraneveld AD, Rutten L, Kettelarij N, Garssen J, Vos AP (2014) Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis. PLoS One 9(2), e89121. doi:10.1371/journal.pone.0089121, PONE-D-13-39586 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Craeyveld V, Swennen K, Dornez E, Van de Wiele T, Marzorati M, Verstraete W, Delaedt Y, Onagbesan O, Decuypere E, Buyse J, De Ketelaere B, Broekaert WF, Delcour JA, Courtin CM (2008) Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 138(12):2348–2355. doi:10.3945/jn.108.094367, 138/12/2348 [pii]

    Article  PubMed  Google Scholar 

  • van Nuenen MHMC, Meyer PD, Venema K (2003) The effect of various inulins and Clostridium difficile on the metabolic activity of the human colonic microbiota in vitro. Microb Ecol Health Dis 15:137–144

    Article  Google Scholar 

  • van Nuenen MH, Venema K, van der Woude JC, Kuipers EJ (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig Dis Sci 49(3):485–491

    Article  PubMed  Google Scholar 

  • Venema K (2012) Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 22(8):123–140

    Article  CAS  Google Scholar 

  • Venema K (2014) In vitro assessment of the bioactivity of food oligosaccharides. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley, Chichester, pp 219–237

    Google Scholar 

  • Venema K (2015) Synbiotics – more than just the sum of pro- & prebiotics? In: Venema K, do Carmo AP (eds) Probiotics and prebiotics: current research and future trends. Caister Academic Press, Poole, pp 345–360

    Google Scholar 

  • Venema K, Meijerink M (2015) Lactobacilli as probiotics: discovering new functional aspects and target sites. In: Venema K, Carmo AP (eds) Probiotics and prebiotics: current research and future trends. Caister Academic, Poole, pp 29–41

    Google Scholar 

  • Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27(1):115–126. doi:10.1016/j.bpg.2013.03.002, S1521-6918(13)00056-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Venema K, van Nuenen MHMC, van den Heuvel EG, Pool W, van der Vossen JMBM (2003) The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microb Ecol Health Dis 15:94–105

    Article  CAS  Google Scholar 

  • Venema K, Vermunt SHF, Brink EJ (2005) D-Tagatose increases butyrate production by the colonic microbiota in healthy men and women. Microb Ecol Health Dis 17:47–57

    Article  CAS  Google Scholar 

  • Venema K, Havenaar R, Minekus M (2009) Improving in vitro simulation of the stomach and intestines. In: McClements DJ, Decker E (eds) Designing functional foods: measuring and controlling food structure breakdown and nutrient absorption. Woodhead Publishing, Cambridge, pp 314–339

    Chapter  Google Scholar 

  • Vitetta L, Manuel R, Zhou JY, Linnane AW, Hall S, Coulson S (2014) The overarching influence of the gut microbiome on end-organ function: the role of live probiotic cultures. Pharmaceuticals (Basel) 7(9):954–989. doi:10.3390/ph7090954, ph7090954 [pii]

    Article  CAS  Google Scholar 

  • Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614. doi:10.1073/pnas.1000092107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yasutake K, Kohjima M, Nakamuta M, Kotoh K, Murata Y, Enjoji M (2014) Probiotic nutrition therapy for nonalcoholic fatty liver disease. Fukuoka Igaku Zasshi 105(2):42–47

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Venema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Venema, K. (2015). Health Effects of Pro- and Prebiotics: Utilization of Sophisticated In Vitro Tools. In: Liong, MT. (eds) Beneficial Microorganisms in Medical and Health Applications. Microbiology Monographs, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-23213-3_1

Download citation

Publish with us

Policies and ethics