Skip to main content

Fuzzy Inference-Based Ontology Matching Using Upper Ontology

Part of the Communications in Computer and Information Science book series (CCIS,volume 539)

Abstract

Bio-ontologies are characterized by large sizes, and there is a large number of smaller ontologies derived from them. Determining semantic correspondences across these smaller ones can be based on this “upper” ontology. To this end, we introduce a new fuzzy inference-based ontology matching approach exploiting upper ontologies as semantic bridges in the matching process. The approach comprises two main steps: first, a fuzzy inference-based matching method is used to determine the confidence values in the ontology matching process. To learn the fuzzy system parameters and to enhance the adaptability of fuzzy membership function parameters, we exploit a gradient discriminate learning technique. Second, the achieved results are then composed and combined to derive the final match result. The experimental results show that the performance of the proposed approach compared to one of the famous benchmark research is acceptable.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23201-0_40
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23201-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  2. Algergawy, A., Nayak, R., Siegmund, N., Köppen, V., Saake, G.: Combining schema and level-based matching for web service discovery. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 114–128. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer Verlag (2011)

    Google Scholar 

  4. Castro-Schez, J.J., Murillo, J.M., Miguel, R., Luo, X.: Knowledge acquisition based on learning of maximal structure fuzzy rules. Knowledge-Based Systems 44, 112–120 (2013)

    CrossRef  Google Scholar 

  5. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer (2013)

    Google Scholar 

  6. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 166. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Hertling, S., Paulheim, H.: WikiMatch - using wikipedia for ontology matching. In: 7th International Workshop on Ontology Matching (2012)

    Google Scholar 

  8. Hung, N.Q.V., Tam, N.T., Mikls, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go reconciliation in schema matching networks. In: ICDE (2014)

    Google Scholar 

  9. Hung, N.Q.V., Wijaya, T.K., Mikls, Z., Aberer, K., Levy, E., Shafran, V., Gal, A., Weidlich, M.: Minimizing human effort in reconciling match networks. In: ER 2013, pp. 212–226 (2013)

    Google Scholar 

  10. Jain, P., Yeh, P.Z., Verma, K., Vasquez, R.G., Damova, M., Hitzler, P., Sheth, A.P.: Contextual ontology alignment of LOD with an upper ontology: a case study with proton. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 80–92. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Jimenez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: 20th European Conference on Artificial Intelligence, pp. 444–449 (2012)

    Google Scholar 

  12. Lambrix, P., Tan, H.: SAMBOA system for aligning and merging biomedical ontologies. Web Semantics: Science, Services and Agents on the World Wide Web 4, 196–206 (2006)

    CrossRef  Google Scholar 

  13. Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)

    CrossRef  Google Scholar 

  14. Li-Quan, Z., Cheng, S.: An adaptive learning method for the generation of fuzzy inference system from data. Acta Automatica Sinica 34(1) (2008)

    Google Scholar 

  15. Mascardi, V., Cord, V., Rosso, P.: A comparison of upper ontologies. WOA 2007, 55–64 (2007)

    Google Scholar 

  16. Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via upper ontologies: A systematic evaluation. IEEE Trans. Knowl. Data Eng. 22(5), 609–623 (2010)

    CrossRef  Google Scholar 

  17. Matos, P., Alcntara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I., Turner, S., Steinbeck, C.: Chemical entities of biological interest: an update. Nucleic Acids Res. 38, D249–D254 (2010)

    CrossRef  Google Scholar 

  18. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and Information Systems 6, 428–440 (2004)

    CrossRef  Google Scholar 

  19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)

    CrossRef  MATH  Google Scholar 

  20. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    CrossRef  Google Scholar 

  21. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25, 1251–1255 (2007)

    CrossRef  Google Scholar 

  22. Snyman, J.A.: Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer (2005)

    Google Scholar 

  23. Stoilos, G., Stamou, G., Kollias, S.D.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  24. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat. Genet. 25 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alsayed Algergawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Davarpanah, S.H., Algergawy, A., Babalou, S. (2015). Fuzzy Inference-Based Ontology Matching Using Upper Ontology. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds) New Trends in Databases and Information Systems. ADBIS 2015. Communications in Computer and Information Science, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-319-23201-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23201-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23200-3

  • Online ISBN: 978-3-319-23201-0

  • eBook Packages: Computer ScienceComputer Science (R0)