Advertisement

East European Conference on Advances in Databases and Information Systems

ADBIS 2015: New Trends in Databases and Information Systems pp 76-87 | Cite as

Data Warehouse Design Methods Review: Trends, Challenges and Future Directions for the Healthcare Domain

  • Christina KhnaisserEmail author
  • Luc Lavoie
  • Hassan Diab
  • Jean-Francois Ethier
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 539)

Abstract

In secondary data use context, traditional data warehouse design methods don’t address many of today’s challenges; particularly in the healthcare domain were semantics plays an essential role to achieve an effective and implementable heterogeneous data integration while satisfying core requirements. Forty papers were selected based on seven core requirements: data integrity, sound temporal schema design, query expressiveness, heterogeneous data integration, knowledge/source evolution integration, traceability and guided automation. Proposed methods were compared based on twenty-two comparison criteria. Analysis of the results shows important trends and challenges, among them (1) a growing number of methods unify knowledge with source structure to obtain a well-defined data warehouse schema built on semantic integration; (2) none of the published methods cover all the core requirements as a whole and (3) their potential in real world is not demonstrated yet.

Keywords

Data warehouse design Clinical data warehouse Secondary data use Medical informatics Bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelló, A., Martín, C.: A bitemporal storage structure for a corporate data warehouse. In: Proceedings of the 5th International Conference on Enterprise Information Systems, pp. 177–183 (2003)Google Scholar
  2. 2.
    Adlassnig, K.-P., Combi, C., Das, A.K., Keravnou, E.T., Pozzi, G.: Temporal representation and reasoning in medicine: Research directions and challenges. Artif. Intell. Med. 38(2), 101–113 (2006)CrossRefGoogle Scholar
  3. 3.
    Bakhtouchi, A., Bellatreche, L., Jean, S., Yamine, A.-A.: MIRSOFT: mediator for integrating and reconciling sources using ontological functional dependencies. Int. J. Web Grid Serv. 8(1), 72–110 (2012)CrossRefGoogle Scholar
  4. 4.
    Branson, A., Hauer, T., McClatchey, R., Rogulin, D., Shamdasani, J.: A data model for integrating heterogeneous medical data in the Health-e-Child project. Stud. Health Technol. Inform. 138, 13–23 (2008)Google Scholar
  5. 5.
    Burney, A., Mahmood, N., Ahsan, K.: TempR-PDM: a conceptual temporal relational model for managing patient data. In: Proceedings of the 9th International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, pp. 237–243. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2010)Google Scholar
  6. 6.
    Chute, C.G., Beck, S.A., Fisk, T.B., Mohr, D.N.: The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data. J. Am. Med. Inform. Assoc. JAMIA. 17(2), 131–135 (2010)CrossRefGoogle Scholar
  7. 7.
    Codd, E.F.: The Relational Model for Database Management: Version 2. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)zbMATHGoogle Scholar
  8. 8.
    Combi, C., Pozzi, G.: HMAP A Temporal Data Model Managing Intervals with Different Granularities and Indeterminacy from Natural Language Sentences. VLDB J. 9(4), 294–311 (2001)zbMATHGoogle Scholar
  9. 9.
    Cravero, A., Sepúlveda, S.: Multidimensional design paradigms for data warehouses: a systematic mapping study. J. Softw. Eng. Appl. 2014(7), 53–61 (2013)Google Scholar
  10. 10.
    Cravero Leal, A., Mazón, J.N., Trujillo, J.: A business-oriented approach to data warehouse development. Ing. E Investig. 33(1), 59–65 (2013)Google Scholar
  11. 11.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Time and relational theory: temporal databases in the relational model and SQL. Morgan Kaufmann, Waltham (2014)Google Scholar
  12. 12.
    Elamin, E., Feki, J.: Toward an ontology based approach fro data warehousing. Presented at the The International Arab Conference on Information Technology (ACIT2014) , University of Nizwa, Oman (2014)Google Scholar
  13. 13.
    Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst., 4–21 (2008)Google Scholar
  14. 14.
    Gosain, A., Singh, J.: Conceptual multidimensional modeling for data warehouses: a survey. In: Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K. (eds.) Proc. of the 3rd Int. Conf. on Front. of Intell. Comput. (FICTA) 2014- Vol. 1. AISC, vol. 327, pp. 305–316. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Hachaichi, Y., Feki, J.: An Automatic Method for the Design of Multidimensional Schemas From Object Oriented Databases. Int. J. Inf. Technol. Decis. Mak. 12(6), 1223–1259 (2013)CrossRefGoogle Scholar
  16. 16.
    Hu, H., Correll, M., Kvecher, L., Osmond, M., Clark, J., Bekhash, A., Schwab, G., Gao, D., Gao, J., Kubatin, V., Shriver, C.D., Hooke, J.A., Maxwell, L.G., Kovatich, A.J., Sheldon, J.G., Liebman, M.N., Mural, R.J.: DW4TR: A Data Warehouse for Translational Research. J. Biomed. Inform. 44(6), 1004–1019 (2011)CrossRefGoogle Scholar
  17. 17.
    Husemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse design. In: Proceedings of the International Workshop on Design and Management of Data Warehouses, DMDW 2000, pp. 3–9 (2000)Google Scholar
  18. 18.
    Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional structure in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Jindal, R., Taneja, S., et al.: Comparative study of data warehouse design approaches: a survey. Int. J. Database Manag. Syst. 4(1), 33–45 (2012)CrossRefGoogle Scholar
  20. 20.
    Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Candón, H., Nadal, S.: Quarry: digging up the gems of your data treasury. In: Alonso, G., Geerts, F., Popa, L., Barceló, P., Teubner, J., Ugarte, M., Bussche, J.V. den, and Paredaens, J. (eds.) Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23–27, 2015, pp. 549–552. OpenProceedings.org (2015)Google Scholar
  21. 21.
    Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Mayorova, D.: A requirement-driven approach to the design and evolution of data warehouses. Inf. Syst. 44, 94–119 (2014)CrossRefGoogle Scholar
  22. 22.
    Kerkri, E.M., Quantin, C., Allaert, F.A., Cottin, Y., Charve, P., Jouanot, F., Yétongnon, K.: An Approach for Integrating Heterogeneous Information Sources in a Medical Data Warehouse. J. Med. Syst. 25(3), 167–176 (2001)CrossRefGoogle Scholar
  23. 23.
    Khnaisser, C., Lavoie, L., Diab, H., Éthier, J.-F.: Data Warehouse Design Methods Review for the Healthcare Domain. http://info.usherbrooke.ca/llavoie/projets/epiiramide
  24. 24.
    Khouri, S., Bellatreche, L., Jean, S., Ait-Ameur, Y.: Requirements driven data warehouse design: we can go further. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 588–603. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Khouri, S., Boukhari, I., Bellatreche, L., Sardet, E., Jean, S., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)CrossRefGoogle Scholar
  26. 26.
    Krneta, D., Jovanovic, V., Marjanovic, Z.: A direct approach to physical Data Vault design. Comput. Sci. Inf. Syst. 11(2), 569–599 (2014)CrossRefGoogle Scholar
  27. 27.
    Lin, S.-H., Lee, Y.-C.G., Hsu, C.-Y.: Data warehouse approach to build a decision-support platform for orthopedics based on clinical and academic requirements. In: Ślęzak, D., Arslan, T., Fang, W.-C., Song, X., Kim, T.-h. (eds.) BSBT 2009. CCIS, vol. 57, pp. 89–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Lowe, H.J., Ferris, T.A., Hernandez, P.M., Weber, S.C.: STRIDE – an integrated standards-based translational research informatics platform. In: AMIA. Annu. Symp. Proc. 2009, pp. 391–395 (2009)Google Scholar
  29. 29.
    Lujan-Mora, S., Trujillo, J.: Applying the UML and the Unified Process to the design of Data Warehouses. J. Comput. Inf. Syst. 47(5), 30–58 (2006)Google Scholar
  30. 30.
    Malinowski, E., Zimányi, E.: A conceptual solution for representing time in data warehouse dimensions. In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling. vol. 53, pp. 45–54. Australian Computer Society, Inc., Darlinghurst (2006)Google Scholar
  31. 31.
    Maté, A., Trujillo, J.: Tracing conceptual models’ evolution in data warehouses by using the model driven architecture. Comput. Stand. Interfaces 36(5), 831–843 (2014)CrossRefGoogle Scholar
  32. 32.
    Mate, S., Köpcke, F., Toddenroth, D., Martin, M., Prokosch, H.-U., Bürkle, T., Ganslandt, T.: Ontology-Based Data Integration between Clinical and Research Systems. PLoS ONE 10, 1 (2015)CrossRefGoogle Scholar
  33. 33.
    Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms. Data Knowl. Eng. 63(3), 725–751 (2007)CrossRefGoogle Scholar
  34. 34.
    Moreira, J., Cordeiro, K., Campos, M.L., Borges, M.: OntoWarehousing – multidimensional design supported by a foundational ontology: a temporal perspective. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 35–44. Springer, Heidelberg (2014)Google Scholar
  35. 35.
    De Mul, M., Alons, P., van der Velde, P., Konings, I., Bakker, J., Hazelzet, J.: Development of a clinical data warehouse from an intensive care clinical information system. Comput. Methods Programs Biomed. 105(1), 22–30 (2012)CrossRefGoogle Scholar
  36. 36.
    Murphy, S.N., Weber, G., Mendis, M., Gainer, V., Chueh, H.C., Churchill, S., Kohane, I.: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J. Am. Med. Inform. Assoc. 17(2), 124–130 (2010)CrossRefGoogle Scholar
  37. 37.
    Nazri, M.N.M., Noah, S.A., Hamid, Z.: Using lexical ontology for semi-automatic logical data warehouse design. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 257–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis. Support Syst. 52(4), 853–868 (2012)CrossRefGoogle Scholar
  39. 39.
    Neil, C.G., De Vincenzi, M.E., Pons, C.F.: Design method for a Historical Data Warehouse, explicit valid time in multidimensional models. Ingeniare Rev. Chil. Ing. 22(2), 218–232 (2014)CrossRefGoogle Scholar
  40. 40.
    Pardillo, J., Mazón, J.-N.: Using ontologies for the design of data warehouses. Int. J. Database Manag. Syst. 3, 2 (2011)Google Scholar
  41. 41.
    Phipps, C., Davis, K.C.: Automating Data Warehouse Conceptual Schema Design and Evaluation. Design and Management of Data Warehouses, pp. 23–32. Citeseer (2002)Google Scholar
  42. 42.
    Post, A.R., Kurc, T., Cholleti, S., Gao, J., Lin, X., Bornstein, W., Cantrell, D., Levine, D., Hohmann, S., Saltz, J.H.: The Analytic Information Warehouse (AIW): A platform for analytics using electronic health record data. J. Biomed. Inform. 46(3), 410–424 (2013)CrossRefGoogle Scholar
  43. 43.
    Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based data warehouse design method. Decis. Support Syst. 42(3), 1449–1473 (2006)CrossRefGoogle Scholar
  44. 44.
    Rizzi, S., Abello, A., Lechtenborger, J., Trujillo, J.: Research in data warehouse modeling and design: dead or alive?. In: 9th ACM International Workshop on Data Warehousing and OLAP – DOLAP 2006, held in Conjunction with the ACM 15th Conference on Information and Knowledge Management, CIKM 2006, November 10, 2006–November 10, 2006, pp. 3–10. Association for Computing Machinery, New York (2006)Google Scholar
  45. 45.
    Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)CrossRefGoogle Scholar
  46. 46.
    Romero, O., Abelló, A.: A Survey of Multidimensional Modeling Methodologies. Int. J. Data Warehous. Min. IJDWM. 5(2), 1–23 (2009)CrossRefGoogle Scholar
  47. 47.
    Romero, O., Simitsis, A., Abelló, A.: GEM: requirement-driven generation of ETL and multidimensional conceptual designs. In: Cuzzocrea, A., Dayal, U. (eds.) Data Warehousing and Knowledge Discovery, pp. 80–95. Springer, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  48. 48.
    Rönnbäck, L., Regardt, O., Bergholtz, M., Johannesson, P., Wohed, P.: Anchor modeling — Agile information modeling in evolving data environments. Data Knowl. Eng. 69(12), 1229–1253 (2010)CrossRefGoogle Scholar
  49. 49.
    Rubin, D.L., Desser, T.S.: A Data Warehouse for Integrating Radiologic and Pathologic Data. J. Am. Coll. Radiol. 5(3), 210–217 (2008)CrossRefGoogle Scholar
  50. 50.
    Sabaini, A., Zimányi, E., Combi, C.: An OLAP-based approach to modeling and querying granular temporal trends. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 69–77. Springer, Heidelberg (2014)Google Scholar
  51. 51.
    Sahama, T.R., Croll, P.R.: A data warehouse architecture for clinical data warehousing. In: Proceedings of the 5th Australasian Symposium on ACSW Frontiers, pp. 227–232. Australian Computer Society, Inc., Darlinghurst (2007)Google Scholar
  52. 52.
    Shortliffe, E.H., Cimino, J.C. (eds.): Biomedical informatics: computer applications in health care and biomedicine. Springer, London (2014)Google Scholar
  53. 53.
    Sitompul, O.S., Noah, S.A.: A Transformation-oriented Methodology to Knowledge-based Conceptual Data Warehouse Design. J. Comput. Sci. 2(5), 460–465 (2006)CrossRefGoogle Scholar
  54. 54.
    Snodgrass, R.T.: Developing time-oriented database applications in SQL. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  55. 55.
    Song, I.Y., Khare, R., Dai, B.: SAMSTAR: a semi-automated lexical method for generating star schemas from an entity-relationship diagram. In: Proceedings of the ACM Tenth International Workshop on Data Warehousing and OLAP, pp. 9–16. ACM (2007)Google Scholar
  56. 56.
    Tebourski, W., Karâa, W.B.A., Ghezala, H.B.: Semi-automatic Data Warehouse Design methodologies: a survey. Int. J. Comput. Sci. Issues IJCSI. 10(5), 48 (2013)Google Scholar
  57. 57.
    Thenmozhi, M., Vivekanandan, K.: A Tool for Data Warehouse Multidimensional Schema Design using Ontology. Int. J. Comput. Sci. Issues IJCSI. 10(2), 161–168 (2013)Google Scholar
  58. 58.
    Di Tria, F., Lefons, E., Tangorra, F.: Hybrid methodology for data warehouse conceptual design by UML schemas. Inf. Softw. Technol. 54(4), 360–379 (2012)CrossRefGoogle Scholar
  59. 59.
    Wisniewski, M.F., Kieszkowski, P., Zagorski, B.M., Trick, W.E., Sommers, M., Weinstein, R.A.: Development of a Clinical Data Warehouse for Hospital Infection Control. J. Am. Med. Inform. Assoc. JAMIA. 10(5), 454–462 (2003)CrossRefGoogle Scholar
  60. 60.
    Zekri, M., Marsit, I., Adellatif, A.: A new data warehouse approach using graph. In: 2011 IEEE 8th International Conference on e-Business Engineering (ICEBE), pp. 65–70. IEEE Computer Society (2011)Google Scholar
  61. 61.
    Zepeda, L., Ceceña, E., Quintero, R., Zatarain, R., Vega, L., Mora, Z., Clemente, G.G.: A MDA tool for data warehouse. In: 2010 International Conference on Computational Science and Its Applications (ICCSA), pp. 261–265 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christina Khnaisser
    • 1
    Email author
  • Luc Lavoie
    • 1
  • Hassan Diab
    • 2
  • Jean-Francois Ethier
    • 2
    • 3
    • 4
  1. 1.Département d’informatiqueUniversité de SherbrookeSherbrookeCanada
  2. 2.Centre Intégré Universitaire de Santé et de Service Sociaux de l’Estrie - Centre Hospitalier de SherbrookeSherbrookeCanada
  3. 3.Département de MédecineUniversité de SherbrookeSherbrookeCanada
  4. 4.INSERM UMR 1138 Team 22 Centre de Recherche des CordeliersUniversité Paris Descartes - Sorbonne Paris CitéParisFrance

Personalised recommendations