Service Optimization

Part of the Service Science: Research and Innovations in the Service Economy book series (SSRI)


This chapter provides an overview of Operations Research and its mathematical models for planning problems arising in the area of services. For a better understanding, a basic introduction into the field of Operations Research is given. Different examples from service areas are presented. Several methods for solving the mathematical problems are discussed. In addition, the optimization software called IBM ILOG CPLEX Optimization Studio is presented that can be used to determine an optimal solution for a mathematical problem. The use of simulation in the area of Operations Research is also discussed and the software AnyLogic is used to provide examples.


Operation Research Travel Salesman Problem Vehicle Route Problem Demand Node Appointment Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Butchers R et al (2001) Optimized crew scheduling at air New Zealand. Interfaces 31(1):30–56CrossRefGoogle Scholar
  2. 2.
    Justesen T (2015) Check-in counter allocation. Accessed on 12 Jan 2015
  3. 3.
    Justesen T (2015) Stand and gate allocation. Accessed on 12 Jan 2015
  4. 4.
    Cook T (2015) Presidential portrait. Accessed on 12 Jan 2015Google Scholar
  5. 5.
    OR-Champions (2015) Operational research and the science of better. Accessed on 12 Jan 2015Google Scholar
  6. 6.
    Daskin M (2010) Service science: service operations for managers and engineers. Wiley-Blackwell, Chichester. ISBN:978-0-470-52588-3; 0-470-52588-6Google Scholar
  7. 7.
    Dantzig G (1963) Linear programming and extensions. Rand Corporation, Santa Monica, pp 94–104zbMATHGoogle Scholar
  8. 8.
    Schrijver A (2000) Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley, Chichester. ISBN:0-471-98232-6; 978-0-471-98232-6Google Scholar
  9. 9.
    Hillier F (2010) In: Lieberman G (ed) Introduction to operations research, vol 9. McGraw-Hill, New York. ISBN:978-0-07-337629-5; 0-07-337629-9; 0-07-126767-0; 978-0-07-126767-0Google Scholar
  10. 10.
    Birge JR (2011) Introduction to stochastic programming. In: Louveaux F (ed) Springer series in operations research and financial engineering. Springer, New York. ISBN:978-1-461-40237-4CrossRefGoogle Scholar
  11. 11.
    Ben-Tal A, El Ghaoui L, Nemirovskij A (2009) Robust optimization. Princeton series in applied mathematics. Princeton University Press, Princeton. ISBN:978-0-691-14368-2; 0-691-14368-4Google Scholar
  12. 12.
    Gross J (ed) (2004) Handbook of graph theory. Discrete mathematics and its applications. CRC Press, Boca Raton. ISBN:1-58488-090-2zbMATHGoogle Scholar
  13. 13.
    Lakatos L, Szeidl L, Telek M (2012) Introduction to queueing systems with telecommunication applications. Springer, BerlinGoogle Scholar
  14. 14.
    Haviv M (2013) Queues: a course in queueing theory. International series in operations research and management science. Springer, New York. ISBN:978-1-461-46765-6CrossRefGoogle Scholar
  15. 15.
    Law A (2015) Simulation modeling and analysis. McGraw-Hill Education, New York. ISBN: 1-259-25438-0Google Scholar
  16. 16.
    Borshchev A (2013) The big book of simulation modeling: multimethod modeling with AnyLogic 6. AnyLogic North America, Lisle. ISBN:978-0-9895731-7-7Google Scholar
  17. 17.
    Dantzig G (1951) Maximization of a linear function of variables subject to linear inequalities. Cowles Commission Monograph No. 13, pp 339–347MathSciNetGoogle Scholar
  18. 18.
    Gass S, Fu M (2013) Encyclopedia of operations research and management science. Springer, New York, p 131CrossRefGoogle Scholar
  19. 19.
    Vanderbei R (2001) Linear programming. In: Foundations and extensions. International series in operations research and management science, vol 37. Springer, New YorkGoogle Scholar
  20. 20.
    Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica J Eco Soc 28:497–520CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Nelson B (2013) Foundations and methods of stochastic simulation: a first course. International series in operations research and management science. Springer, Boston. ISBN:978-1-461-46160-9CrossRefGoogle Scholar
  23. 23.
    Domschke W, Drexl A (2007) Einfuhrung in Operations Research: mit 63 Tabellen. Springer-Lehrbuch. Springer, Berlin. ISBN:978-3-540-70948-0; 978-3-540-23431-9Google Scholar
  24. 24.
    Shippert R (2005) A study of time-dependent operating room fees and how to save $ 100,000 by using time-saving products. Am J Cosmet Surg 22(1):25–34Google Scholar
  25. 25.
    Abouleish A et al (2003) Labor costs incurred by Anesthesiology groups because of operating rooms not being allocated and cases not being scheduled to maximize operating room efficiency. Anesth Analg 96(4):1109–1113CrossRefGoogle Scholar
  26. 26.
    Garey M, Johnson D (2008) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York. ISBN:0-7167-1045-5; 978-0-7167-1044-8Google Scholar
  27. 27.
    Bramel J, Simchi-Levi D (1997) The logic of logistics. Springer, New York. ISBN:978-1-4684-9311-5CrossRefzbMATHGoogle Scholar
  28. 28.
    Dunke F (2014) Online optimization with lookahead. Ph.D. thesis, Karlsruhe, KIT, Diss.,Google Scholar
  29. 29.
    Laporte G, Nickel S, da Gama FS (eds) (2015) Location science, vol 145. Springer, New York. ISBN:978-331-91311-1-5Google Scholar
  30. 30.
    Toregas C et al (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373CrossRefzbMATHGoogle Scholar
  31. 31.
    Church R, Velle C (1974) The maximal covering location problem. Pap Reg Sci 32(1):101–118CrossRefGoogle Scholar
  32. 32.
    Hakimi S (1964) Optimum location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459CrossRefzbMATHGoogle Scholar
  33. 33.
    Menger K (1932) Das Botenproblem. In: Menger K (ed) Ergebnisse eines Mathematischen Kolloquiums, vol 2. Teubner, Leipzig, pp 11–12Google Scholar
  34. 34.
    Toth P, Vigo D (2001) The vehicle routing problem. SIAM, Philadelphia. ISBN:0-89871-498-2; 0-89871-579-2Google Scholar
  35. 35.
    Dantzig G, Ramser J (1959) The truck dispatching problem. Manag Sci 6(1):80–91CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Clarke GU, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581CrossRefGoogle Scholar
  37. 37.
    Grunert T, Irnich S (2005) Optimierung im Transport. Wege und Touren, vol 2. Shaker, Aachen. ISBN:3-8322-4515-4Google Scholar
  38. 38.
    Cayirli T, Veral E (2009) Outpatient scheduling in health care: a review of literature. Prod Oper Manag 12(4):519–549CrossRefGoogle Scholar
  39. 39.
    Stone A (2012) Why waiting is torture. The New York Times, Sunday ReviewGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Karlsruhe Service Research Institute (KSRI), Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations