Advertisement

Recognition of Images Degraded by Gaussian Blur

  • Jan Flusser
  • Tomáš SukEmail author
  • Sajad Farokhi
  • Cyril HöschlIV
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

We introduce a new theory of invariants to Gaussian blur. The invariants are defined in Fourier spectral domain by means of projection operators and, equivalently, in the image domain by means of image moments. The application of these invariants is in blur-invariant image comparison and recognition. The behavior of the invariants is studied and compared with other methods in experiments on both artificial and real blurred and noisy images.

Keywords

Blurred image Object recognition Blur invariant comparison Gaussian blur Projection operators Image moments  Moment invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carasso, A.S.: The APEX method in image sharpening and the use of low exponent Lévy stable laws. SIAM Journal on Applied Mathematics 63(2), 593–618 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(7), 699–716 (1998)CrossRefGoogle Scholar
  3. 3.
    Flusser, J., Suk, T.: Degraded image analysis: An invariant approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(6), 590–603 (1998)CrossRefGoogle Scholar
  4. 4.
    Flusser, J., Suk, T., Boldyš, J., Zitová, B.: Projection operators and moment invariants to image blurring. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(4), 786–802 (2015)CrossRefGoogle Scholar
  5. 5.
    Gopalan, R., Taheri, S., Turaga, P., Chellappa, R.: A blur-robust descriptor with applications to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(6), 1220–1226 (2012)CrossRefGoogle Scholar
  6. 6.
    Honarvar Shakibaei, B., Flusser, J.: Image deconvolution in moment domain. In: Papakostas, G.A. (ed.) Moments and Moment Invariants - Theory and Applications Gate to Computer Science and Research, vol. 1, pp. 111–125. Science Gate Publishing (2014)Google Scholar
  7. 7.
    Liu, J., Zhang, T.: Recognition of the blurred image by complex moment invariants. Pattern Recognition Letters 26(8), 1128–1138 (2005)CrossRefGoogle Scholar
  8. 8.
    Šroubek, F., Flusser, J.: Multichannel blind iterative image restoration. IEEE Transactions on Image Processing 12(9), 1094–1106 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Xiao, B., Ma, J.F., Cui, J.T.: Combined blur, translation, scale and rotation invariant image recognition by Radon and pseudo-Fourier-Mellin transforms. Pattern Recognition 45, 314–321 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Xue, F., Blu, T.: A novel SURE-based criterion for parametric PSF estimation. IEEE Transactions on Image Processing 24(2), 595–607 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhang, W., Cham, W.K.: Single-image refocusing and defocusing. IEEE Transactions on Image Processing 21(2), 873–882 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Klassen, E., Srivastava, A.: Gaussian blurring-invariant comparison of signals and images. IEEE Transactions on Image Processing 22(8), 3145–3157 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Klassen, E., Srivastava, A., Turaga, P., Chellappa, R.: Blurring-invariant riemannian metrics for comparing signals and images. In: IEEE International Conference on Computer Vision, ICCV 2011, pp. 1770–1775 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan Flusser
    • 1
  • Tomáš Suk
    • 1
    Email author
  • Sajad Farokhi
    • 1
  • Cyril HöschlIV
    • 1
  1. 1.Institute of Information Theory and Automation of the CASPraha 8Czech Republic

Personalised recommendations