Skip to main content

Ground Level Recovery from Terrestrial Laser Scanning Data with the Variably Randomized Iterated Hierarchical Hough Transform

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

The planar digital terrain model to be used in the analysis of forest measurements made with terrestrial LIDAR scanning is proposed for regions dominated by plains. The structure of the data suggests that the iterated version of the Hough transform is a suitable method. This makes it possible to reduce the time and memory requirements of the method. Randomization with the fraction of data used varying with distance to the scanner is proposed to address the biasing of the result towards the measurements which are made with higher density in the central part of the stand. Using this method instead of weighted voting reduces the time of analysis. Hierarchical approach leads to further reduction of time. The method can be extended to models formed from more than one plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. of Photogrammetry and Remote Sensing 59(1–2), 85–101 (2004). doi:10.1016/j.isprsjprs.2004.05.004

    Article  Google Scholar 

  2. Stereńczak, K., Zasada, M., Brach, M.: The accuracy assessment of DTM generated from LIDAR data for forest area - a case study for scots pine stands in Poland. Baltic Forestry 19(2), 252–262 (2013)

    Google Scholar 

  3. Stereńczak, K., Kozak, J.: Evaluation of digital terrain models generated in forest conditions from airborne laser scanning data acquired in two seasons. Scandinavian Journal of Forest Research 26(4), 374–384 (2011). doi:10.1080/02827581.2011.570781

    Article  Google Scholar 

  4. Costantino, D., Angelini, M.: Production of DTM quality by TLS data. International Journal of Remote Sensing 46, 80–103 (2013). doi:10.5721/EuJRS20134606

    Google Scholar 

  5. Eltner, A., Mulsow, C., Maas, H.G.: Quantitative measurement of soil erosion from TLS and UAV data. International Archives of the Photogrammetry, Remote Sensing and Spatial. Information Sciences 2, 119–124 (2013). doi:10.5194/isprsarchives-XL-1-W2-119-2013

    Google Scholar 

  6. Puttonen, E., Krooks, A., et al.: Ground level determination in forested environment with utilization of a scanner-centered terrestrial laser scanning configuration. IEEE Geoscience and Remote Sensing Letters 12(3), 616–620 (2015). doi:10.1109/LGRS.2014.2353414

    Article  Google Scholar 

  7. Srinivasan, S., Popescu, S., et al.: Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing 7(2), 1877–1896 (2015). doi:10.3390/rs70201877

    Article  Google Scholar 

  8. Dassot, M., Colin, A., et al.: Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Computers and Electronics in Agriculture 89, 86–93 (2012). doi:10.1016/j.compag.2012.08.005

    Article  Google Scholar 

  9. Chmielewski, L.J., Bator, M., Zasada, M., Stereńczak, K., Strzeliński, P.: Fuzzy hough transform-based methods for extraction and measurements of single trees in large-volume 3D terrestrial LIDAR data. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 265–274. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Chmielewski, L.J., Bator, M.: Hough transform for opaque circles measured from outside and fuzzy voting for and against. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 313–320. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Chmielewski, L.J., Bator, M., Olejniczak, M.: Advantages of using object-specific knowledge at an early processing stage in the detection of trees in LIDAR data. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 145–154. Springer, Heidelberg (2014)

    Google Scholar 

  12. Hough, P.: Machine analysis of bubble chamber pictures. In: Proc. Int. Conf. on High Energy Accelerators and Instrumentation, CERN (1959)

    Google Scholar 

  13. Habib, A., Schenk, T.: New approach for matching surfaces from laser scanners and optical sensors. In: Csatho, B.M., (ed.) Proc. Joint Workshop of ISPRS III/5 and III/2 on Mapping Surface Structure and Topography by Air-borne and Space-borne Lasers, La Jolla, San Diego, CA, Nov 9–11, 1999

    Google Scholar 

  14. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)

    Article  MATH  Google Scholar 

  15. Kälviäinen, H., Hirvonen, P., et al.: Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image and Vision Computing 13(4), 239–252 (1995). doi:10.1016/0262-8856(95)99713-B

    Article  Google Scholar 

  16. Tarsha-Kurdi, F., Grussenmeyer, P.: Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from Lidar data. In: Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, vol. XXXVI-3/W52, Espoo, Finland, pp. 407–412, September 2007

    Google Scholar 

  17. Borrmann, D., Elseberg, J., et al.: The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Research 2(2) (2011). doi:10.1007/3DRes.02(2011)3

  18. Bernal-Marin, M., Bayro-Corrochano, E.: Integration of Hough Transform of lines and planes in the framework of conformal geometric algebra for 2D and 3D robot vision. Pattern Recognition Letters 32(16), 2213–2223 (2011). doi:10.1016/j.patrec.2011.05.014

    Article  Google Scholar 

  19. Grant, W., Voorhies, R., Itti, L.: Finding planes in LiDAR point clouds for real-time registration. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2013, pp. 4347–4354, November 2013. doi:10.1109/IROS.2013.6696980

  20. Hulik, R., et al.: Continuous plane detection in point-cloud data based on 3D Hough Transform. Journal of Visual Communication and Image Representation 25(1), 86–97 (2014). doi:10.1016/j.jvcir.2013.04.001

    Article  Google Scholar 

  21. Limberger, F.A., Oliveira, M.M.: Real-time detection of planar regions in unorganized point clouds. Pattern Recognition 48(6), 2043–2053 (2015). doi:10.1016/j.patcog.2014.12.020

    Article  Google Scholar 

  22. Chmielewski, L.: Choice of the Hough transform for image registration. Proc. SPIE. 5505, 122–134 (2004). doi:10.1117/12.577912

    Article  Google Scholar 

  23. Zasada, M., Stereńczak, K., et al.: Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques. Forest Ecology and Management 302, 171–177 (2013). doi:10.1016/j.foreco.2013.03.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek J. Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chmielewski, L.J., Orłowski, A. (2015). Ground Level Recovery from Terrestrial Laser Scanning Data with the Variably Randomized Iterated Hierarchical Hough Transform. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics