Skip to main content

A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

2D images often contain irregular salient features and interest points with non-integer coordinates. Our skeletonization problem for such a noisy sparse cloud is to summarize the topology of a given 2D cloud across all scales in the form of a graph, which can be used for combining local features into a more powerful object-wide descriptor.

We extend a classical Minimum Spanning Tree of a cloud to a Homologically Persistent Skeleton, which is scale-and-rotation invariant and depends only on the cloud without extra parameters. This graph

  1. (1)

    is computable in time \(O(n\log n)\) for any n points in the plane;

  2. (2)

    has the minimum total length among all graphs that span a 2D cloud at any scale and also have most persistent 1-dimensional cycles;

  3. (3)

    is geometrically stable for noisy samples around planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric graph reconstruction from noisy data. IJCGA 22, 305–325 (2012)

    MathSciNet  Google Scholar 

  2. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes – a state-of-the-art report. In: Math. Foundations of Visualization, Computer Graphics, and Massive Data Exploration, pp. 109–125. Springer (2009)

    Google Scholar 

  3. Chazal, F., Huang, R., Sun, J.: Gromov-Hausdorff approximation of filament structure using Reeb-type graph. Discrete Comp. Geometry 53, 621–649 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chernov, A., Kurlin, V.: Reconstructing persistent graph structures from noisy images. Image-A 3, 19–22 (2013)

    Google Scholar 

  5. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete and Computational Geometry 37, 103–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornea, N., Silver, D., Min, P.: Curve-Skeleton Properties, Applications, and Algorithms IEEE Trans. Visualization Comp. Graphics 13, 530–548 (2007)

    Article  Google Scholar 

  7. Costanza, E., Huang, J.: Designable visual markers. In: Proceedings of SIGCHI 2009: Special Interest Group on Computer-Human Interaction, pp. 1879–1888 (2009)

    Google Scholar 

  8. Dey, T., Fan, F., Wang, Y.: Graph induced complex on data points. In: Proceedings of SoCG 2013: Symposium on Computational Geometry, pp. 107–116 (2013)

    Google Scholar 

  9. Edelsbrunner, H.: The union of balls and its dual shape. Discrete Computational Geometry 13, 415–440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. AMS

    Google Scholar 

  11. Ge, X., Safa, I., Belkin, M., Wang, Y.: Data skeletonization via Reeb graphs. In: Proceedings of NIPS 2011, pp. 837–845 (2011)

    Google Scholar 

  12. Kurlin, V.: A fast and robust algorithm to count topologically persistent holes in noisy clouds. In: Proceedings of CVPR 2014, pp. 1458–1463 (2014)

    Google Scholar 

  13. Kurlin, V.: Auto-completion of contours in sketches, maps and sparse 2D images based on topological persistence. In: Proceedings of CTIC 2014, pp. 594–601 (2014)

    Google Scholar 

  14. Kurlin, V.: A Homologically Persistent Skeleton is a fast and robust descriptor of interest points in 2D images (full version of this paper). http://kurlin.org

  15. Kurlin, V.: A one-dimensional Homologically Persistent Skeleton of an unstructured point cloud in any metric space. Computer Graphics Forum 34(5), 253–262 (2015)

    Article  Google Scholar 

  16. Letscher, D., Fritts, J.: Image segmentation using topological persistence. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 587–595. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Publishers (1994)

    Google Scholar 

  18. Singh, R., Cherkassky, V., Papanikolopoulos, N.: Self-organizing maps for the skeletonization of sparse shapes. Tran. Neural Networks 11, 241–248 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurlin, V. (2015). A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics