Skip to main content

Towards Ubiquitous Autonomous Driving: The CCSAD Dataset

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

Several online real-world stereo datasets exist for the development and testing of algorithms in the fields of perception and navigation of autonomous vehicles. However, none of them was recorded in developing countries, and therefore they lack the particular challenges that can be found on their streets and roads, like abundant potholes, irregular speed bumpers, and peculiar flows of pedestrians. We introduce a novel dataset that possesses such characteristics. The stereo dataset was recorded in Mexico from a moving vehicle. It contains high-resolution stereo images which are complemented with direction and acceleration data obtained from an IMU, GPS data, and data from the car computer. This paper describes the structure and contents of our dataset files and presents reconstruction experiments that we performed on the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auckland U. of Technology: The.enpeda. Image Sequence Analysis Test Site (EISATS). www.cerv.aut.ac.nz/EISATS

  2. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. Pattern Anal. Mach. Intell. 20, 401–406 (1998)

    Article  Google Scholar 

  3. Daimler A.G.: Ground truth stixel dataset. www.6d-vision.com/ground-truth-stixel-dataset

  4. Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70, 41–54 (2006)

    Article  Google Scholar 

  5. Fontana, G., Matteucci, M., Sorrenti, D.: Methods and experimental techniques in computer engineering, chap. 4, pp. 55–68. Springer Briefs in Applied Sciences and Technology, Springer (2014)

    Google Scholar 

  6. Gehrig, S., Rabe, C.: Real-time semi-global matching on the CPU. In: Proc. ICVPR Workshops, pp. 85–92 (2010)

    Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. J. Robotics Research (2013)

    Google Scholar 

  8. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Heidelberg Collaboratory for Image Processing: Robust vision challenge. www.hci.iwr.uniheidelberg.de/Static/challenge2012/

  10. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)

    Article  Google Scholar 

  11. Klette, R.: Concise Computer Vision. Springer, London (2014)

    Book  MATH  Google Scholar 

  12. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. ICCV, pp. 508–515 (2001)

    Google Scholar 

  13. Konolige, K.: Small vision system: hardware and implementation. In: Proc. ISRR, pp. 111–116 (1997)

    Google Scholar 

  14. Ladicky, L., Sturgess, P., Russell, C., Sengupta, S., Bastanlar, Y., Clocksin, W.F., Torr, P.H.S.: Joint optimization for object class segmentation and dense stereo reconstruction. Int. J. Computer Vision 100, 122–133 (2012)

    Article  MathSciNet  Google Scholar 

  15. OpenCV: Open Source Computer Vision Library. www.opencv.org

  16. Pomerleau, D., Jochem, T.: Rapidly adapting machine vision for automated vehicle steering. IEEE Expert: Intelligent Systems Their Applications 11, 19–27 (1996)

    Article  Google Scholar 

  17. U. of Parma: Public ROad Urban Driverless-Car Test 2013. www.vislab.it/proud-en/

  18. Xiang, X., Zhang, M., Li, G., He, Y., Pan, Z.: Real-time stereo matching based on fast belief propagation. Machine Vision Applications 23, 1219–1227 (2012)

    Article  Google Scholar 

  19. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Hayet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Guzmán, R., Hayet, JB., Klette, R. (2015). Towards Ubiquitous Autonomous Driving: The CCSAD Dataset. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics