Advertisement

Where is My Cup? - Fully Automatic Detection and Recognition of Textureless Objects in Real-World Images

  • Joanna Isabelle OlszewskaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

In this work, we propose a new method for fully automatic detection and recognition of textureless objects present in complex visual scenes. While most approaches only deal with shape matching, our approach considers objects both in terms of low-level features and high-level information, and represents objects’ view-based templates as trees. Multi-level matching increases algorithm robustness, while the new tree structure of the template reduces its computational burden. We have evaluated our algorithm on the CMU dataset consisting of objects under arbitrary viewpoints and in cluttered environment. Our proposed approach has shown excellent performance, outperforming state-of-the-art methods.

Keywords

Object detection Object recognition Template Tree Active contours Automatic scene understanding Robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 73–80 (June 2010)Google Scholar
  2. 2.
    Alqaisi, T., Gledhill, D., Olszewska, J.I.: Embedded double matching of local descriptors for a fast automatic recognition of real-world objects. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2012), pp. 2385–2388 (October 2012)Google Scholar
  3. 3.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 898–916 (2011)CrossRefGoogle Scholar
  4. 4.
    Azzopardi, G., Petkov, N.: Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(2), 490–503 (2013)CrossRefGoogle Scholar
  5. 5.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar
  6. 6.
    Borenstein, E., Ullman, S.: Combined top-down/bottom-up segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(12), 2109–2125 (2008)CrossRefGoogle Scholar
  7. 7.
    Cmu, IKEA Kitchen Object Dataset: Carnegie Mellon University, USA (2014). http://www.cs.cmu.edu/~vmr/datasets/ikea_kitchen/
  8. 8.
    Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. International Journal of Computer Vision 87(3), 284–303 (2010)CrossRefGoogle Scholar
  9. 9.
    Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient response maps for real-time detection of textureless objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(5), 876–888 (2012)CrossRefGoogle Scholar
  10. 10.
    Hsiao, E., Hebert, M.: Occlusion reasoning for object detection under arbitrary viewpoint. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2012) (2012)Google Scholar
  11. 11.
    Hsiao, E., Hebert, M.: Gradient networks: Explicit shape matching without extracting edges. In: Proceedings of the AAAI International Conference on Artificial Intelligence (AAAI 2013) (July 2013)Google Scholar
  12. 12.
    Hsiao, E., Hebert, M.: Shape-based instance detection under arbitrary viewpoint. In: Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective, pp. 485–495. Springer (2013)Google Scholar
  13. 13.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  14. 14.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  15. 15.
    Khan, F.S., Anwer, R.M., van de Weijer, J., Bagdanov, A., Vanrell, M., Lopez, A.M.: Color attributes for object detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2012), pp. 3306–3313 (June 2012)Google Scholar
  16. 16.
    Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation. International Journal of Computer Vision 81(1), 105–118 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, J., Lu, B.L.: An adaptive image Euclidean distance. Pattern Recognition 42(3), 349–357 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Morales-Gonzalez, A., Garcia-Reyes, E.: Simple object recognition based on spatial relations and visual features represented using irregular pyramids. Multimedia Tools Applications 63(3), 875–897 (2013)CrossRefGoogle Scholar
  20. 20.
    Olszewska, J.I.: Active contour based optical character recognition for automated scene understanding. Neurocomputing 161C, 65–71 (2015)CrossRefGoogle Scholar
  21. 21.
    Olszewska, J.I., McCluskey, T.L.: Ontology-coupled active contours for dynamic video scene understanding. In: Proceedings of the IEEE International Conference on Intelligent Engineering Systems, pp. 369–374 (June 2011)Google Scholar
  22. 22.
    Olszewska, J.I., et al.: Speeded-up gradient vector flow B-spline active contours for robust and real-time tracking. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 905–908 (April 2007)Google Scholar
  23. 23.
    Santini, S., Jain, R.: Similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 871–883 (1999)CrossRefGoogle Scholar
  24. 24.
    Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1270–1281 (2008)CrossRefGoogle Scholar
  25. 25.
    Srinivasan, P., Zhu, Q., Shi, J.: Many-to-one contour matching for describing and discriminating object shape. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 1673–1680 (June 2010)Google Scholar
  26. 26.
    van de Weijer, J., Schmid, C.: Applying color names to image description. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2007), pp. III.493–III.496 (September 2007)Google Scholar
  27. 27.
    Yan, J., Lei., Z., Wen., L., Li, S.Z.: The fastest deformable part model for object detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2014), pp. 2497–2504 (June 2014)Google Scholar
  28. 28.
    Zheng, Y., Doermann, D.: Robust point matching for non-rigid shapes by preserving local neighbourhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 643–649 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of GloucestershireCheltenhamUK

Personalised recommendations