Advertisement

A High-Order Depth-Based Graph Matching Method

  • Lu Bai
  • Zhihong ZhangEmail author
  • Peng Ren
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

We recently proposed a novel depth-based graph matching method by aligning the depth-based representations of vertices. One drawback of the new method is that it only considers the structural co-relations, and the spatial co-relations of vertices are discarded. This drawback limits the performance of the method on graph-based image matching problems. To overcome the shortcoming, we develop a new high-order depth-based matching method, by incorporating the spatial coordinate information of vertices (i.e., the pixel coordinates of vertices in original images). The new matching method is based on a high order dominant cluster analysis [1]. We use the new high-order matching method to identify the mismatches in the original first-order depth-based matching results, and remove the incorrect matches. Experiments on real world image databases demonstrate the effectiveness of our new high-order DB matching method.

Keywords

Depth-based representations Graph matching High-order depth-based matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ren, P., Wilson, R.C., Hancock, E.R.: High order structural matching using dominant cluster analysis. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 1–8. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Bai, X., Yu, H., Hancock, E.R.: Graph matching using spectral embedding and semidefinite programming. In: Proceedings of the British Machine Vision Conference, BMVC 2004, Kingston, UK, pp. 1–10, September 7–9, 2004Google Scholar
  3. 3.
    Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision 47, 60–69 (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19, 255–259 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Shapiro, L.G., Haralick, R.M.: A metric for comparing relational descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 7, 90–94 (1985)CrossRefGoogle Scholar
  6. 6.
    Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 17, 749–764 (1995)CrossRefGoogle Scholar
  7. 7.
    Emms, D., Wilson, R.C., Hancock, E.R.: Graph matching using the interference of discrete-time quantum walks. Image Vision Comput. 27, 934–949 (2009)CrossRefGoogle Scholar
  8. 8.
    Solé-Ribalta, A., Serratosa, F.: Graduated assignment algorithm for multiple graph matching based on a common labeling. IJPRAI 27 (2013)Google Scholar
  9. 9.
    Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recognition 47, 1172–1186 (2014)CrossRefGoogle Scholar
  10. 10.
    Bai, L., Ren, P., Bai, X., Hancock, E.R.: A graph kernel from the depth-based representation. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 1–11. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Bai, L., Hancock, E.R., Ren, P.: Jensen-shannon graph kernel using information functionals. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, pp. 2877–2880, November 11–15, 2012Google Scholar
  12. 12.
    Bai, L., Hancock, E.R.: A fast jensen-shannon subgraph kernel. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 181–190. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Scott, G.L., Longuett-Higgins, E.C.: An algorithm to associating the features of two images. In: Proceedings of the Royal Society of London B, pp. 313–320 (1991)Google Scholar
  14. 14.
    Kupfer, B., Netanyahu, N.S., Shimshoni, I.: An efficient sift-based mode-seeking algorithm for sub-pixel registration of remotely sensed images. IEEE Geosci. Remote Sensing Lett. 12, 379–383 (2015)CrossRefGoogle Scholar
  15. 15.
    Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recognition 48, 344–355 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lu Bai
    • 1
  • Zhihong Zhang
    • 2
    Email author
  • Peng Ren
    • 3
  • Edwin R. Hancock
    • 4
  1. 1.School of InformationCentral University of Finance and EconomicsBeijingChina
  2. 2.Software SchoolXiamen UniversityXiamenChina
  3. 3.College of Information and Control EngineeringChina University of PetroleumBeijingChina
  4. 4.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations