Advertisement

Craniofacial Reconstruction Using Gaussian Process Latent Variable Models

  • Zedong Xiao
  • Junli Zhao
  • Xuejun Qiao
  • Fuqing DuanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

Craniofacial reconstruction aims at estimating the facial outlook associated to a skull. It can be applied in victim identification, forensic medicine and archaeology. In this paper, we propose a craniofacial reconstruction method using Gaussian Process Latent Variable Models (GP-LVM). GP-LVM is used to represent the skull and face skin data in a low dimensional latent space respectively. The mapping from the skull to face skin is built in the latent spaces by using least square support vector machine (LSSVM) regression model. Experimental results show that the GP-LVM latent space improves the representation of craniofacial data and boosts the reconstruction results compared with the methods in literature.

Keywords

GP-LVM LSSVM Craniofacial reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berar, M., Tilotta, F.M., Glaunès, J.A., Rozenholc, Y.: Craniofacial reconstruction as a prediction problem using a latent root regression model. Forensic Science International 210(1), 228–236 (2011)CrossRefGoogle Scholar
  2. 2.
    Claes, P., Vandermeulen, D., De Greef, S., Willems, G., Clement, J.G., Suetens, P.: Computerized craniofacial reconstruction: conceptual framework and review. Forensic Science International 201(1), 138–145 (2010)CrossRefGoogle Scholar
  3. 3.
    Claes, P., Vandermeulen, D., De Greef, S., Willems, G., Clement, J.G., Suetens, P.: Bayesian estimation of optimal craniofacial reconstructions. Forensic Science International 201(1), 146–152 (2010)CrossRefGoogle Scholar
  4. 4.
    Hu, Y., Duan, F., Zhou, M., Sun, Y., Yin, B.: Craniofacial reconstruction based on a hierarchical dense deformable model. EURASIP Journal on Advances in Signal Processing 2012(1), 1–14 (2012)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Chang, L., Qiao, X., Liu, R., Duan, F.: Craniofacial reconstruction based on least square support vector regression. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 1147–1151. IEEE (2014)Google Scholar
  6. 6.
    Kermi, A., Laskri, M.T.: A 3D deformable model constrained by anthropometric knowledge for computerized facial reconstructions. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 924–929. IEEE (2012)Google Scholar
  7. 7.
    Quatrehomme, G., Cotin, S., Subsol, G., Delingette, H., Garidel, Y., Grévin, G., Fidrich, M., Bailet, P., Ollier, A., et al.: A fully three-dimensional method for facial reconstruction based on deformable models. Journal of Forensic Sciences 42(4), 649–652 (1997)CrossRefGoogle Scholar
  8. 8.
    Berar, M., Desvignes, M., Bailly, G., Payan, Y.: 3D statistical facial reconstruction. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, ISPA 2005, pp. 365–370. IEEE (2005)Google Scholar
  9. 9.
    Duan, F., Huang, D., Tian, Y., Lu, K., Wu, Z., Zhou, M.: 3D face reconstruction from skull by regression modeling in shape parameter spaces. Neurocomputing 151, 674–682 (2015)CrossRefGoogle Scholar
  10. 10.
    Duan, F., Yang, S., Huang, D., Hu, Y., Wu, Z., Zhou, M.: Craniofacial reconstruction based on multi-linear subspace analysis. Multimedia Tools and Applications 73(2), 809–823 (2014)CrossRefGoogle Scholar
  11. 11.
    Suetens, P., Willems, G., Vandermeulen, D., De Greef, S., Claes, P.: Statistically deformable face models for cranio-facial reconstruction. CIT. Journal of Computing and Information Technology 14(1), 21–30 (2006)CrossRefGoogle Scholar
  12. 12.
    Paysan, P., Lüthi, M., Albrecht, T., Lerch, A., Amberg, B., Santini, F., Vetter, T.: Face reconstruction from skull shapes and physical attributes. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 232–241. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. Advances in Neural Information Processing Systems 16, 329–336 (2004)MathSciNetGoogle Scholar
  14. 14.
    Ek, C.H., Torr, P., Lawrence, N.D.: Gaussian process latent variable models for human pose estimation. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892, pp. 132–143. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transactions on Graphics (TOG) 23, 522–531 (2004)CrossRefGoogle Scholar
  16. 16.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics 21, 163–169 (1987)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, X., Yang, R.: Learning 3D shape from a single facial image via non-linear manifold embedding and alignment. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 414–421. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zedong Xiao
    • 1
  • Junli Zhao
    • 1
    • 2
  • Xuejun Qiao
    • 3
  • Fuqing Duan
    • 1
    Email author
  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.College of Software and TechnologyQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.School of ScienceXian University of Architecture and TechnologyXi’anPeople’s Republic of China

Personalised recommendations