International Conference on Computer Analysis of Images and Patterns

CAIP 2015: Computer Analysis of Images and Patterns pp 423-431

Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

Electron tomography is the most widely applicable method for obtaining 3D information by electron microscopy. In the field of biology it has been realized that electron tomography is capable of providing a complete, molecular resolution three-dimensional mapping of entire proteoms. However, to realize this goal, information needs to be extracted efficiently from these tomograms. Owing to extremely low signal-to-noise ratios, this task is mostly carried out manually. Standard template matching approaches tend to generate large amounts of false positives. We developed an alternative method for feature extraction in biological electron tomography based on reduced representation templates, approximating the search model by a small number of anchor points used to calculate the scoring function. Using this approach we see a reduction of about 50% false positives with matched-filter approaches to below 5%. At the same time, false negatives stay below 5%, thus essentially matching the performance one would expect from human operators.

Keywords

Electron tomography Feature extraction Template matching Reduced representation Cellualar tomography Biological systems Ribosomes Actin filaments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frey, T.G., Perkins, G.A., Ellisman, M.H.: Electron Tomography of Membrane-Bound Cellular Organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199–224 (2006)CrossRefGoogle Scholar
  2. 2.
    Subramaniam, S.: Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr. Opin. Microbiol. 8, 316–322 (2005)CrossRefGoogle Scholar
  3. 3.
    McIntosh, R., Nicastro, D., Mastronarde, D.: New views of cells in 3D: an introduction to electron tomography. Trends. Cell. Biol. 15, 43–51 (2005)CrossRefGoogle Scholar
  4. 4.
    Lucic, V., Yang, T., Schweikert, G., Forster, F., Baumeister, W.: Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13, 423–434 (2005)CrossRefGoogle Scholar
  5. 5.
    Leis, A.P., Beck, M., Gruska, M., Best, C., Hegerl, R., Baumeister, W., Leis, J.W.: Cryo-electron tomography of biological specimens. IEEE Signal. Proc. Mag. 23, 95–103 (2006)CrossRefGoogle Scholar
  6. 6.
    Sali, A., Glaeser, R., Earnest, T., Baumeister, W.: From words to literature in structural proteomics. Nature 422, 216–225 (2003)CrossRefGoogle Scholar
  7. 7.
    Nickell, S., Kofler, C., Leis, A.P., Baumeister, W.: A visual approach to proteomics. Nat. Rev. Mol. Cell. Biol. 7, 225–230 (2006)CrossRefGoogle Scholar
  8. 8.
    Baumeister, W.: From proteomic inventory to architecture. FEBS Lett. 579, 933–937 (2005)CrossRefGoogle Scholar
  9. 9.
    Marsh, B.J., Mastronarde, D.N., Buttle, K.F., Howell, K.E., McIntosh, J.R.: Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl. Acad. Sci. USA 98, 2399–2406 (2001)CrossRefGoogle Scholar
  10. 10.
    Iancu, C.V., Wright, E.R., Heymann, J.B., Jensen, G.J.: A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J. Struct. Biol. 153, 231–240 (2006)CrossRefGoogle Scholar
  11. 11.
    McEwen, B.F., Downing, K.H., Glaeser, R.M.: The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60, 357–373 (1995)CrossRefGoogle Scholar
  12. 12.
    Al-Amoudi, A., Norlen, L.P., Dubochet, J.: Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148, 131–135 (2004)CrossRefGoogle Scholar
  13. 13.
    McEwen, B.F., Marko, M.: The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49, 553–564 (2001)CrossRefGoogle Scholar
  14. 14.
    Marsh, B.J.: Lessons from tomographic studies of the mammalian Golgi. Biochim. Biophys. Acta. 1744, 273–292 (2005)CrossRefGoogle Scholar
  15. 15.
    Frangakis, A.S., Förster, F.: Computational exploration of structural information from cryo-electron tomograms. Curr. Opin. Struct. Biol. 14, 325–331 (2004)CrossRefGoogle Scholar
  16. 16.
    Sandberg, K., Brega, M.: Segmentation of thin structures in electron micrographs using orientation fields. J. Struct. Biol. 157, 403–415 (2007)CrossRefGoogle Scholar
  17. 17.
    Volkmann, N.: Methods for segmentation and interpretation of electron tomographic reconstructions. Methods. Enzymol. 483, 31–46 (2010)CrossRefGoogle Scholar
  18. 18.
    Volkmann, N.: Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions. Curr. Opin. Cell. Biol. 24, 141–147 (2012)CrossRefGoogle Scholar
  19. 19.
    Böhm, J., Frangakis, A.S., Hegerl, R., Nickell, S., Typke, D., Baumeister, W.: From the cover: toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl. Acad. Sci. USA 97, 14245–14250 (2000)CrossRefGoogle Scholar
  20. 20.
    Frangakis, A.S., Hegerl, R.: Segmentation of two- and three-dimensional data from electron microscopy using eigenvector analysis. J. Struct. Biol. 138, 105–113 (2002)CrossRefGoogle Scholar
  21. 21.
    Ortiz, J.O., Forster, F., Kurner, J., Linaroudis, A.A., Baumeister, W.: Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J. Struct. Biol. 156, 334–341 (2006)CrossRefGoogle Scholar
  22. 22.
    Rath, B.K., Hegerl, R., Leith, A., Shaikh, T.R., Wagenknecht, T., Frank, J.: Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144, 95–103 (2003)CrossRefGoogle Scholar
  23. 23.
    Sigworth, F.J.: Classical detection theory and the cryo-EM particle selection problem. J. Struct. Biol. 145, 111–122 (2004)CrossRefGoogle Scholar
  24. 24.
    van der Heide, P., Xu, X.P., Marsh, B.J., Hanein, D., Volkmann, N.: Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering. J. Struct. Biol. 158, 196–204 (2007)CrossRefGoogle Scholar
  25. 25.
    Spahn, C.M., Jan, E., Mulder, A., Grassucci, R.A., Sarnow, P., Frank, J.: Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004)CrossRefGoogle Scholar
  26. 26.
    Volkmann, N.: An approach to automated particle picking from electron micrographs based on reduced representation templates. J. Struct. Biol. 145, 152–156 (2004)CrossRefGoogle Scholar
  27. 27.
    Volkmann, N.: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138, 123–129 (2002)CrossRefGoogle Scholar
  28. 28.
    Rouiller, I., Xu, X.P., Amann, K.J., Egile, C., Nickell, S., Nicastro, D., Li, R., Pollard, T.D., Volkmann, N., Hanein, D.: The structural basis of actin filament branching by Arp2/3 complex. J. Cell. Biol. 180, 887–895 (2008)CrossRefGoogle Scholar
  29. 29.
    Janssen, M.E., Kim, E., Liu, H., Fujimoto, L.M., Bobkov, A., Volkmann, N., Hanein, D.: Three-dimensional structure of vinculin bound to actin filaments. Mol. Cell 21, 271–281 (2006)CrossRefGoogle Scholar
  30. 30.
    Zhu, Y., Carragher, B., Glaeser, R.M., Fellmann, D., Bajaj, C., Bern, M., Mouche, F., de Haas, F., Hall, R.J., Kriegman, D.J., Ludtke, S.J., Mallick, S.P., Penczek, P.A., Roseman, A.M., Sigworth, F.J., Volkmann, N., Potter, C.S.: Automatic particle selection: results of a comparative study. J. Struct. Biol. 145, 3–14 (2004)CrossRefGoogle Scholar
  31. 31.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xiao-Ping Xu
    • 1
  • Christopher Page
    • 1
  • Niels Volkmann
    • 1
  1. 1.Sanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations