Skip to main content

Bundle Adjustment with Implicit Structure Modeling Using a Direct Linear Transform

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

Bundle adjustment (BA) is considered to be the “golden standard” optimisation technique for multiple-view reconstruction over decades of research. The technique simultaneously tunes camera parameters and scene structure to fit a nonlinear function, in a way that the discrepancy between the observed scene points and their reprojections are minimised in a least-squares manner. Computational feasibility and numerical conditioning are two major concerns of todays BA implementations, and choosing a proper parametrization of structure in 3D space could dramatically improve numerical stability, convergence speed, and cost of evaluating Jacobian matrices. In this paper we study several alternative representations of 3D structure and propose an implicit modeling approach based on a Direct Linear Transform (DLT) estimation. The performances of a variety of parametrization techniques are evaluated using simulated visual odometry scenarios. Experimental results show that the computational cost and convergence speed is further improved to achieve similar accuracy without explicit adjustment over the structure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Engels, C., Stewenius, H., Nister, D.: Bundle adjustment rules. In: Proc. Photogrammetric Computer Vision (2006)

    Google Scholar 

  4. Brown, D.C.: The bundle adjustment - progress and prospects. Int. Archives Photogrammetry 21(3), 3:3–3:35 (1976)

    Google Scholar 

  5. Granshaw, S.I.: Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record 10(56), 181–207 (1980)

    Article  Google Scholar 

  6. Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Computer Vision Image Understanding 100(3), 416–441 (2005)

    Article  Google Scholar 

  7. Zhang, J., Boutin, M., Aliaga, D.G.: Robust bundle adjustment for structure from motion. In: Proc. IEEE Image Processing 2006, pp. 2185–2188 (2006)

    Google Scholar 

  8. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Computer Vision 80(2), 189–210 (2008)

    Article  Google Scholar 

  9. Zhang, Z., Shan, Y.: Incremental motion estimation through local bundle adjustment. Technical Report MSR-TR-01-54, Microsoft (2001)

    Google Scholar 

  10. Konolige, K., Agrawal, M.: FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Trans. Robotics 24(5), 1066–1077 (2008)

    Article  Google Scholar 

  11. Civera, J., Davison, J., Montiel, J.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Robotics 24(5), 932–945 (2008)

    Article  Google Scholar 

  12. Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Proc. Robotics Science Systems Conf. (2009)

    Google Scholar 

  13. Schneider, J., Labe, T., Forstner, W.: Incremental real-time bundle adjustment for multi-camera systems with points at infinity. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL–1/W2, 355–360 (2013)

    Article  Google Scholar 

  14. Zhao, L., Huang, S., Sun, Y., Yan, L.: ParallaxBA: bundle adjustment using parallax angle feature parametrization. In: Proc. Robotics Automation (ICRA) 2011, pp. 3117–3124 (2011)

    Google Scholar 

  15. Moore, Z., Wright, D., Schinstock, D.E., Lewis, C.: Comparison of bundle adjustment formulations. In: Proc. ASPRS Annual Conf., Baltimore, Maryland (2009)

    Google Scholar 

  16. Lourakis, M.I.A., Argyros, A.A.: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Mathematical Software 36(1), 2:1–2:30 (2009)

    Article  MathSciNet  Google Scholar 

  17. Konolige, K.: Sparse bundle adjustment. In: Proc. British Machine Vision Conf. (BMVC), pp. 1–11 (2010)

    Google Scholar 

  18. Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: Proc. Computer Vision Pattern Recognition (CVPR) 2011, pp. 3057–3064 (2011)

    Google Scholar 

  19. Albl, C., Pajdla, T.: Global camera parameterization for bundle adjustment. Technical Report CTU-CMP-2013-17, Czech Technical University Prague (2013)

    Google Scholar 

  20. Bartoli, A., Sturm, P.: Three new algorithms for projective bundle adjustment with minumum parameters. Research Report RR-4236, INRIA (2001)

    Google Scholar 

  21. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. The Quarterly Applied Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  22. Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Lourakis, M.I.A., Argyros, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implenting bundle adjustment? In: Proc. ICCV, vol. 2, pp. 1526–1531 (2005)

    Google Scholar 

  24. Indelman, V.: Bundle adjustment without iterative structure estimation and its application to navigation. In: Proc. IEEE/ION Position Location Navigation Symp. (PLANS), pp. 748–756 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiang-Jen Chien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chien, HJ., Geng, H., Klette, R. (2015). Bundle Adjustment with Implicit Structure Modeling Using a Direct Linear Transform. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics