Skip to main content

What Is in Front? Multiple-Object Detection and Tracking with Dynamic Occlusion Handling

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9256)

Abstract

This paper proposes a multiple-object detection and tracking method that explicitly handles dynamic occlusions. A context-based multiple-cue detector is proposed to detect occluded vehicles (occludees). First, we detect and track fully-visible vehicles (occluders). Occludee detection adopts those occluders as priors. Two classifiers for partially-visible vehicles are trained to use appearance cues. Disparity is adopted to further constrain the occludee locations. A detected occludee is then tracked by a Kalman-based tracking-by-detection method. As dynamic occlusions lead to role changes for occluder or occludee, an integrative module is introduced for possibly switching occludee and occluder trackers. The proposed system was tested on overtaking scenarios. It improved an occluder-only tracking system by over 10% regarding the frame-based detection rate, and by over 20% regarding the trajectory detection rate. The occludees are detected and tracked in the proposed method up to 7 seconds before they are picked up by occluder-only method.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23192-1_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23192-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brendel, W., Amer, M.R., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: CVPR (2011)

    Google Scholar 

  2. Chen, G., Ding, Y., Xiao, J., Han, T.X.: Detection evolution with multi-order contextual co-occurrence. In: CVPR (2013)

    Google Scholar 

  3. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)

    CrossRef  Google Scholar 

  4. Gao, T., Packer, B., Koller, D.: A segmentation-aware object detection model with occlusion handling. In: CVPR (2011)

    Google Scholar 

  5. Girshick, R.B., Felzenszwalb, P.F., Mcallester, D.A.: Object detection with grammar models. In: NIPS (2011)

    Google Scholar 

  6. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR (2005)

    Google Scholar 

  7. Huang, C., Li, Y., Nevatia, R.: Multiple target tracking by learning-based hierarchical association of detection responses. TPAMI 35(4), 898–910 (2013)

    CrossRef  Google Scholar 

  8. Karlinsky, L., Dinerstein, M., Harari, D., Ullman, S.: The chains model for detecting parts by their context. In: CVPR (2010)

    Google Scholar 

  9. Leal-Taix, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (2014)

    Google Scholar 

  10. Li, B., Hu, W., Wu, T., Zhu, S.C.: Modeling occlusion by discriminative and-or structures. In: ICCV (2013)

    Google Scholar 

  11. Li, B., Wu, T., Zhu, S.-C.: Integrating context and occlusion for car detection by hierarchical and-or model. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 652–667. Springer, Heidelberg (2014)

    Google Scholar 

  12. Li, B., Song, X., Wu, T., Hu, W., Pei, M.: Coupling-and-decoupling: A hierarchical model for occlusion-free object detection. PR 47(10), 3254–3264 (2014)

    Google Scholar 

  13. Ouyang, W., Wang, X.: Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR (2013)

    Google Scholar 

  14. Pepikj, B., Stark, M., Gehler, P., Schiele, B.: Occlusion patterns for object class detection. In: CVPR (2013)

    Google Scholar 

  15. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  16. Rezaei, M., Klette, R.: Look at the driver, look at the road: no distraction! no accident! In: CVPR (2014)

    Google Scholar 

  17. Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people. IJCV 110(1), 58–69 (2009)

    CrossRef  Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)

    Google Scholar 

  19. Klette, R.: Concise Computer Vision. Springer, London (2014)

    MATH  CrossRef  Google Scholar 

  20. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: ICCV (2009)

    Google Scholar 

  21. Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., Li, S.Z.: Multiple target tracking based on undirected hierarchical relation hypergraph. In CVPR, 2014

    Google Scholar 

  22. Wöhler, C., Joachim, K.A.: An adaptable time-delay neural-network algorithm for image sequence analysis. IEEE Trans. Neural Networks 10(6), 1531–1536 (1999)

    CrossRef  Google Scholar 

  23. Yang, Y., Baker, S., Kannan, A., Ramanan, D.: Recognizing proxemics in personal photos. In: CVPR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junli Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tao, J., Enzweiler, M., Franke, U., Pfeiffer, D., Klette, R. (2015). What Is in Front? Multiple-Object Detection and Tracking with Dynamic Occlusion Handling. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)