Advertisement

Unsupervised Surface Reflectance Field Multi-segmenter

  • Michal HaindlEmail author
  • Stanislav Mikeš
  • Mineichi Kudo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

An unsupervised, illumination invariant, multi-spectral, multi-resolution, multiple-segmenter for textured images with unknown number of classes is presented. The segmenter is based on a weighted combination of several unsupervised segmentation results, each in different resolution, using the modified sum rule. Multi-spectral textured image mosaics are locally represented by eight causal directional multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark both on the surface reflectance field textures as well as on the static colour textures using the commonest segmentation criteria and compares favourably with several leading alternative image segmentation methods.

Keywords

Unsupervised image segmentation Textural features Illumination invariants Surface reflectance field Bidirectional texture function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  2. 2.
    Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  4. 4.
    Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)zbMATHGoogle Scholar
  5. 5.
    Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  7. 7.
    Haindl, M., Mikeš, S.: Model-based texture segmentation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Haindl, M., Mikeš, S.: Unsupervised image segmentation contest. In: Proceedings of the 22nd International Conference on Pattern Recognition, ICPR 2014, pp. 1484–1489. IEEE Computer Society CPS, Los Alamitos, August 2014. http://mosaic.utia.cas.cz/icpr2014/
  9. 9.
    Haindl, M., Mikeš, S., Pudil, P.: Unsupervised hierarchical weighted multi-segmenter. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 272–282. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Haindl, M.: Texture segmentation using recursive Markov random field parameter estimation. In: Bjarne, K.E., Peter, J. (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, pp. 771–776. Pattern Recognition Society of Denmark, Lyngby (1999)Google Scholar
  11. 11.
    Haindl, M.: Visual data recognition and modeling based on local markovian models. In: Florack, L., Duits, R., Jongbloed, G., Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation, Computational Imaging and Vision, chap. 14, vol. 41, pp. 241–259. Springer, London (2012). doi: 10.1007/978-1-4471-2353-8_14 CrossRefGoogle Scholar
  12. 12.
    Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multiple segmenters strategy. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 210–219. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Hoang, M.A., Geusebroek, J.M., Smeulders, A.W.: Color texture measurement and segmentation. Signal Processing 85(2), 265–275 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kittler, J., Hojjatoleslami, A., Windeatt, T.: Weighting factors in multiple expert fusion. In: Proc. BMVC, pp. 41–50. BMVA (1997)Google Scholar
  15. 15.
    Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)CrossRefGoogle Scholar
  16. 16.
    Panagiotakis, C., Grinias, I., Tziritas, G.: Natural image segmentation based on tree equipartition, bayesian flooding and region merging. IEEE Transactions on Image Processing 20(8), 2276–2287 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10), 939–954 (1995)CrossRefGoogle Scholar
  18. 18.
    Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP-Image Understanding 57(3), 359–372 (1993)CrossRefGoogle Scholar
  19. 19.
    Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442(7104), 719–846 (2006)CrossRefGoogle Scholar
  20. 20.
    Vacha, P., Haindl, M.: Image retrieval measures based on illumination invariant textural mrf features. In: CIVR 2007: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 448–454. ACM Press, New York (2007)Google Scholar
  21. 21.
    Yuan, J., Wang, D.: Factorization-based texture segmentation. Tech. Rep. OSU-CISRC-1/13-TR0, The Ohio State University, Columbus (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michal Haindl
    • 1
    Email author
  • Stanislav Mikeš
    • 1
  • Mineichi Kudo
    • 2
  1. 1.The Institute of Information Theory and Automation of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations