Advertisement

Optical Flow Computation with Locally Quadratic Assumption

  • Tomoya Kato
  • Hayato Itoh
  • Atsushi ImiyaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

The purpose of this paper is twofold. First, we develop a quadratic tracker which computes a locally quadratic optical flow field by solving a model-fitting problem for each point in its local neighbourhood. This local method allows us to select a region of interest for the optical flow computation. Secondly, we propose a method to compute the transportation of a motion field in long-time image sequences using the Wasserstein distance for cyclic distributions. This measure evaluates the motion coherency in an image sequence and detects collapses of smoothness of the motion vector field in an image sequence.

Keywords

Stereo Match Angle Error Stereo Pair Directional Statistic Temporal Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  2. 2.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings of ICCV 1998, pp. 59–66 (1998)Google Scholar
  3. 3.
    Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1993)Google Scholar
  4. 4.
    Wedel, A., Cremers, D.: Stereo Scene Flow for 3D Motion Analysis. Springer (2011)Google Scholar
  5. 5.
    Vogel, Ch., Schindler, K., Roth, S.L.: Piecewise rigid scene flow. In: Proceedings of ICCV 2013, pp. 1377–1384 (2013)Google Scholar
  6. 6.
    Vogel, Ch., Schindler, K., Roth, S.: 3D scene flow estimation with a rigid motion prior. In: Proceedings of ICCV 2011, pp. 1291–1298 (2011)Google Scholar
  7. 7.
    Rabin, J., Delon, J., Gousseau, Y.: Transportation distances on the circle. JMIV 41, 147–167 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hwang, S.-H., Lee, U.-K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)CrossRefGoogle Scholar
  9. 9.
    Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40, 2496–2503 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Villani, C.: Optimal Transport, Old and New. Springer (2009)Google Scholar
  11. 11.
    Baker, S., Matthews, I.: Lucas-Kanade 20 years On: A unifying framework. IJCV 56, 221–255 (2004)CrossRefGoogle Scholar
  12. 12.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI 1981, pp. 674–679 (1981)Google Scholar
  13. 13.
    Shi, J., Tomasi, C.: Good features to track. In: Proceedings of CVPR 1994, pp. 593–600 (1994)Google Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR 2005 (2005)Google Scholar
  15. 15.
    Ustundag, B.C., Unel, M.: Human action recognition using histograms of oriented optical flows from depth. In: Bebis, G., et al. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 629–638. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Chaudhry, R., Ravichandran, A., Hager, G.D., Vidal, R.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proceedings of CVPR 2009, pp. 1932–1939 (2009)Google Scholar
  17. 17.
    Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV 61, 211–231 (2005)CrossRefGoogle Scholar
  19. 19.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-\(L^1\). In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  20. 20.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)CrossRefGoogle Scholar
  21. 21.
    Shin, Y.-Y., Chang, O.-S., Xu, J.: Convergence of fixed point iteration for deblurring and denoising problem. Applied Mathematics and Computation 189, 1178–1185 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Advanced Integration ScienceChiba UniversityChibaJapan
  2. 2.Institute of Management and Information TechnologiesChiba UniversityInage-ku, ChibaJapan

Personalised recommendations