Advertisement

Ground Truth Correspondence Between Nodes to Learn Graph-Matching Edit-Costs

  • Xavier Cortés
  • Francesc SerratosaEmail author
  • Carlos Francisco Moreno-García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

The Graph Edit Distance is the most used distance between Attributed Graphs and it is composed of three main costs on nodes and arcs: Insertion, Deletion and Substitution. We present a method to learn the Insertion and Deletion costs of nodes and edges defined in the Graph Edit Distance, whereas, we define the Edit Cost Substitution data dependent and without parameters (for instance the Euclidean distance). In some applications, the ground truth of the correspondence between some pairs of graphs is available or can be easily deducted. The aim of the method we present is the learning process depends on these few available ground truth correspondences and not to the classification set that in some applications is not available. To learn these costs, the optimisation algorithm tends to minimise the Hamming distance between the ground truth correspondences and the automatically extracted node correspondences. We believe that minimising the Hamming distance makes the matching algorithm to find a good correspondence and so, to increase the recognition ratio of the classification algorithm in a pattern recognition application.

Keywords

Graph edit distance Learning edit costs Hamming distance Continuous optimisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jouili, S., Tabbone, S.: Hypergraph-based image retrieval for graph-based representation. Pattern Recognition 45(11), 4054–4068 (2012)CrossRefGoogle Scholar
  2. 2.
    Neuhaus, M., Bunke, H.: A graph matching based approach to fingerprint classification using directional variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 191–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component retrieval based on a database of graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Syst. Appl. 40(7), 2493–2502 (2013)CrossRefGoogle Scholar
  4. 4.
    Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Machine Learning 75(1), 3–35 (2009)CrossRefGoogle Scholar
  5. 5.
    Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT 2012, pp. 8–21Google Scholar
  6. 6.
    Qi, X., Wu, Q., Zhang, Y., Fuller, E., Zhang, C.-Q.: A novel model for DNA sequence similarity analysis based on graph theory. Evolutionary Bioinformatics 7, 149–154 (2011)Google Scholar
  7. 7.
    Sanfeliu, A., Fu, K.S.: A Distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–362 (1983)zbMATHCrossRefGoogle Scholar
  8. 8.
    Gao, X., et al.: A survey of graph edit distance. Pattern Analysis and Applications 13(1), 113–129 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and Applications. Intern. Journal Pattern Recognition & Artificial Intelligence 26(5) (2012)Google Scholar
  11. 11.
    Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Trans. on Sys., Man, and Cybernetics, Part B 35(3), 503–514 (2005)CrossRefGoogle Scholar
  12. 12.
    Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Information Sciences 177(1), 239–247 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised Learning for Graph Matching. International Journal of Computer Vision 96(1), 28–45 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Caetano, T., et al.: Learning Graph Matching. Transaction on Pattern Analysis and Machine Intelligence 31(6), 1048–1058 (2009)CrossRefGoogle Scholar
  15. 15.
    Serratosa, F., Solé-Ribalta, A., Cortés, X.: Automatic learning of edit costs based on interactive and adaptive graph recognition. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 152–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Moreno, C., Serratosa, F.: Consensus of Two Sets of Correspondences through Optimisation Functions, Pattern Analysis and Applications (2015)Google Scholar
  17. 17.
    Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press (2012). ISBN: 9780262018258Google Scholar
  18. 18.
    Cortés, X., Serratosa, F.: Learning Graph-Matching Edit-Costs based on the Optimality of the Oracle’s Node Correspondences. Pattern Recognition Letters 56, 22–29 (2015)CrossRefGoogle Scholar
  19. 19.
    Lladós, J., Martí, E., Villanueva, J.J.: Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)CrossRefGoogle Scholar
  20. 20.
    Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE TPAMI 18(4), 377–388 (1996)CrossRefGoogle Scholar
  21. 21.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Computing 27(7), 950–959 (2009)CrossRefGoogle Scholar
  22. 22.
    Serratosa, F.: Fast Computation of Bipartite Graph Matching. Pattern Recognition Letters 45, 244–250 (2014)CrossRefGoogle Scholar
  23. 23.
    Serratosa, F.: Speeding up Fast Bipartite Graph Matching trough a new cost matrix. International Journal of Pattern Recognition and Artificial Intelligence 29(2) (2015)Google Scholar
  24. 24.
    Cortés, X., Moreno, C., Serratosa, F.: Improving the correspondence establishment based on interactive homography estimation. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 457–465. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Serratosa, F., Cortés, X.: Interactive Graph-Matching using Active Query Strategies. Pattern Recognition 48, 1360–1369 (2015)CrossRefGoogle Scholar
  26. 26.
    Cortés, X., Serratosa, F.: An Interactive Method for the Image Alignment problem based on Partially Supervised Correspondence. Expert Systems with Applications 42(1), 179–192 (2015)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comp. Vision and Image Unders. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  29. 29.
    Delaunay, B.: Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)Google Scholar
  30. 30.
    Nelder, J.A., Mead, R.: Computer Journal 7, 308–313 (1965)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xavier Cortés
    • 1
  • Francesc Serratosa
    • 1
    Email author
  • Carlos Francisco Moreno-García
    • 1
  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations