Skip to main content

Utilization of Microorganisms for Biopurification of Wastewaters (Agricultural and Industrial): An Environmental Perspective

  • Chapter
Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas

Part of the book series: Microbiology Monographs ((MICROMONO,volume 29))

Abstract

Microbial biotreatment of wastewaters is a concern in recent years. Discharge of toxic pollutants to wastewater collection systems has increased concurrently with society’s progressive industrialization. Although industrialization is inevitable, various devastating ecological and human disasters which have continuously occurred implicate industries as major contributors to pollution problems and environmental degradation of various magnitudes. Organic and inorganic substances which were released into the environment as a result of agricultural and industrial water activities lead to organic and inorganic pollution. It stands to reason that an effective treatment of these wastewaters is necessary. Microorganisms have been tested primarily as an approach for the removal of organic pollutants from wastewaters and have been proven effective at reducing chemical oxygen demand (COD) and toxicity. Biological treatment in the study provides some of the most viable options for the treatment of wastewaters. Microbial degradation of industrial wastewaters involving the application of a variety of microorganisms has demonstrated effective degradability of wastewaters which has attracted attention in recent time. The utilization of these microorganisms for bioremediation of toxic industrial wastewaters offers a very efficient tool for biopurification of contaminated effluents. Bacterial and fungal strains in this study have huge capability of treating wastewaters discharged from various industries. They are ubiquitous in nature and their adaptability to extreme conditions makes them good biodegraders. Their enzyme producing activity makes them effective decolorizers and they remove toxic metals by adsorption ultimately rendering the wastewaters more ecofriendly. Noteworthy, the bacterial and fungal biomasses present many assets for the biopurification of wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Paulo AC, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • AbdulKarim MI, Daud NA, Alam MDZ (2011) Treatment of palm oil mill effluent using microorganisms. In: Alam MDZ, Jameel AT, Amid A (eds) Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM), vol III. IIUM, Kuala Lumpur, pp 269–275. ISBN 9789674181444

    Google Scholar 

  • Acharya BK, Mohana S, Madamwar D (2008) Anaerobic treatment of distillery spent wash—a study on upflow anaerobic fixed film bioreactor. Bioresour Technol 99:4621–4626

    Article  CAS  PubMed  Google Scholar 

  • Akthar MN, Mohan PM (1995) Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr Sci 69:1028–1030

    CAS  Google Scholar 

  • Alvarado-Lassman A, Rustrián E, García-Alvarado MA, Rodríguez-Jiménez GC, Houbron E (2008) Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Bioresour Technol 99:3009–3015

    Article  CAS  PubMed  Google Scholar 

  • Amezcua-Allieri MA, Lead JR, Rodriguez-Vazquez R (2005) Changes in Cd and Cr fluxes during the bioremediation of phenanthrene. Soil Use Manag 21:337–339

    Article  Google Scholar 

  • Ammar E, Nasri M, Medhioub K (2005) Isolation of phenol degrading Enterobacteria from the wastewater of olive oil extraction process. World J Microbiol Biotechnol 21(3):253–259

    Article  CAS  Google Scholar 

  • Assadi MM, Jahangiri MR (2001) Environmental application of fungal and textile plant system, decolonization of textile waste water and related dyestuffs. Desalination 141(1):1–6

    Article  CAS  Google Scholar 

  • Assas N, Marouani L, Hamdi M (2000) Scale down and optimization of olive mill wastewaters decolorization by Geotrichum candidum. Bioprocess Eng 22:503–507

    Article  CAS  Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chyrosporium. Microb Ecol 20:197–209

    Article  CAS  PubMed  Google Scholar 

  • Bala JD, Yusuf IZ, Tahir F (2012) Bacteriological assessment of pharmaceutical wastewater and its public health implications in Nigeria. IUP J Biotechnol 6(1):34–49

    Google Scholar 

  • Bala JD, Lalung J, Ismail N (2015) Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains. Int J Recycl Org Waste Agr 4(1):1–10. doi:10.1007/s40093-014-0079-6, Print ISSN: 2195-3228; Online ISSN: 2251-7715; Publisher: Springer

    Article  Google Scholar 

  • Banat IM, Nigam P, McMullan G, Marchant R, Singh D (1996) The isolation of thermophilic bacterial cultures capable of textile dyes decolourization. Environ Health 23(4):547–551

    Google Scholar 

  • Barbosa RA, Sant’Anna GL Jr (1989) Treatment of raw domestic sewage in an UASB reactor. Water Res 23:1483–1490

    Article  CAS  Google Scholar 

  • Bastian RK, Reed, SC (1979) Aquaculture systems for wastewater treatment. In: Seminar proceedings and engineering assessment. U.S. EPA, Washington DC, p 485

    Google Scholar 

  • Behling E, Diaz A, Colina G, Herrera M, Gutierrez E, Chacin E, Fernandez N, Forster CF (1997) Domestic wastewater treatment using UASB reactor. Bioresour Technol 61:239–245

    Article  CAS  Google Scholar 

  • Bello-Mendoza R, Castillo-Rivera MF (1998) Start-up of an anaerobic hybrid (UASB/filter) reactor treating wastewater from a coffee processing plant. Anaerobe 4:219–225

    Article  CAS  PubMed  Google Scholar 

  • Ben Hamman O, De la Rubia T, Martinez J (1999) Decolorization of olive oil mill wastewaters by Phanerochaete flavido-alba. Environ Toxicol Chem 18:2410–2415

    CAS  Google Scholar 

  • Bengtsson BE, Triet T (1994) Tapioca starch wastewater toxicity characterized by Microtox and Duckweed tests. Ambio 23:473–477

    Google Scholar 

  • Benitez J, Beltran-Heredia J, Torregrosa J, Acero JL, Cercas V (1997) Aerobic degradation of olive mill wastewaters. Appl Microbiol Biotechnol 47:185–188

    Article  CAS  PubMed  Google Scholar 

  • Benito G, Pena M, Rodriguez D (1997) Decolourization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour Technol 1997(61):33–37

    Article  Google Scholar 

  • Bhole BD, Ganguly B, Madhuram A, Deshpande D, Joshi J (2004) Biosorption of methyl violet, basic fuchsin and their mixture using dead fungal biomass. Curr Sci 86(12):1641–1645

    CAS  Google Scholar 

  • Bodkhe S (2008) Development of an improved anaerobic filter for municipal wastewater treatment. Bioresour Technol 99:222–227

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ (1994a) Anaerobic digestion of palm oil mill effluent using an up-flow anaerobic sludge blanket reactor. Biomass Bioenergy 6:381–389

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ (1994b) Treatment of palm oil mill effluent by upflow anaerobic filtration. J Chem Technol Biotechnol 61:103–109

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ (1995a) Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. J Biotechnol 39:251–259

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ (1995b) Comparison of an anaerobic filter and an anaerobic fluidized bed reactor treating palm oil mill effluent. Process Biochem 30:511–521

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ, Wang Z (1995) Performance of a hybrid anaerobic reactor, combining a sludge blanket and a filter, treating slaughterhouse wastewater. Appl Microbiol Biotechnol 43:351–357

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ, Sánchez E (1996a) Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) reactor. J Biotechnol 45:125–135

    Article  CAS  Google Scholar 

  • Borja R, Alba J, Banks CJ (1996b) Anaerobic digestion of wash waters derived from the purification of virgin olive oil using a hybrid reactor combining a filter and a sludge blanket. Process Biochem 31:219–224

    Article  CAS  Google Scholar 

  • Borja R, Banks CJ, Wang Z, Mancha A (1998) Anaerobic digestion of slaughterhouse wastewater using a combination sludge blanket and filter arrangement in a single reactor. Bioresour Technol 65:125–133

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989a) Carotene (provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier, London, pp 15–26

    Chapter  Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989b) Industrial production: methods and economics. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and cyanobacterial biotechnology. Longman, London, pp 244–316

    Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by white rot fungus. Science 228:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Terron MC, Fidalgo ML, Pelayo JM, Galletti GC, Gonzalez AE (1995) Pyrolysis-gas chromatography-mass spectrometry characterization of wheat straw alkaline-cooking effluents after biological treatment with the fungi Phanerochaete chrysosporium and Ganoderma australe. Anal Acta 309:145–152

    Article  CAS  Google Scholar 

  • Chakrabarty T, Subrahmanyam PVR, Sundaresan BB (1988) Biodegradation of recalcitrant industrial wastes. In: Wise D (ed) Bio-treatment systems, vol 2. CRC, Boca Raton, FL, pp 172–234

    Google Scholar 

  • Chin KK, Wong KK (1983) Thermophilic anaerobic digestion of palm oil mill effluent. Water Res 17:993–995

    Article  CAS  Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772

    Article  CAS  PubMed  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 43:301–312

    CAS  PubMed  Google Scholar 

  • Christov LP, Van Driessel B, du Plessis CA (1999) Fungal biomass from Rhizomucor pusillus as adsorbent of chromophores from a bleach plant effluent. Process Biochem 35:91–95

    Article  CAS  Google Scholar 

  • Chtourou M, Ammar E, Nasri M, Medhioub K (2004) Isolation of a yeast, Trichosporon cutaneum, able to use low molecular weight phenolic compounds: application to olive mill waste water treatment. J Chem Technol Biotechnol 79:869–878

    Article  CAS  Google Scholar 

  • Cochrane VW (1958) Physiology of the fungi. Wiley, New York

    Book  Google Scholar 

  • Conneely A, Smyth WF, McMullan G (1999) Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol Lett 179:333–337

    Article  CAS  PubMed  Google Scholar 

  • Constantinos E, Papadopoulou K, Kotsou M, Mari I, Constantinos B (1999) Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol Ecol 30:301–311

    Article  Google Scholar 

  • Cooke WB (1979) The ecology of fungi. CRE, Boca Raton, FL

    Google Scholar 

  • Córdoba PR, Francese AP, Sineriz F (1995) Improved performance of a hybrid design over an anaerobic filter for the treatment of dairy industry wastewater at laboratory scale. J Ferment Bioeng 79:270–272

    Article  Google Scholar 

  • Coulibaly L (2002) Bioconversion de macromolécules dans un réacteur simulant un écoulement piston en régime transitoire. Cas de labioremédiation d’eaux usées synthétique par Aspergillus niger. Thèse de doctorat, Université Catholique de Louvain, Unité de géniebiologique. www.gebi.ucl.ac.be

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chyrosporium. Appl Environ Microbiol 56:1114–1118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Culley DDJ, Epps AE (1973) Use of Duckweed for waste treatment and animal feed. J Water Pollut Control Fed 45:337–347

    Google Scholar 

  • D’Annibale A, Crestini C, Vinciguerra V, Giovannozzi Sermanni G (1998) The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. J Biotechnol 61:209–218

    Article  PubMed  Google Scholar 

  • Dalis D, Anagnostidis K, Lopez A, Letsiou I, Hartmann L (1996) Anaerobic digestion of total raw olive-oil wastewater in a two-stage pilot-plant (up-flow and fixed-bed bioreactors). Bioresour Technol 57:237–243

    Article  CAS  Google Scholar 

  • De Felice B, Pontecorvo G, Carfagna M (1997) Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida. Acta Biotechnol 17(3):231–239. doi:10.1002/abio.370170306

    Article  Google Scholar 

  • De la Noüe J, De Pauw N (1988) The potential of microalgal biotechnology. A review of production and uses of microalgae. Biotechnol Adv 6:725–770

    Article  PubMed  Google Scholar 

  • De Pauw N, Van Vaerenbergh E (1983) Microalgal wastewater treatment systems: potentials and limits. In: Ghette PF (ed) Phytodepuration and the employment of the biomass produced. Centro Ric. Produz, Animali, Reggio Emilia, Italy, pp 211–287

    Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (g) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1-2):220–225

    Article  CAS  PubMed  Google Scholar 

  • Dhouib A, Ellouz M, Aloui F, Sayadi S (2006) Effect of bioaugmentation of activated sludge with white rot fungi on olive mill wastewater detoxification. Lett Appl Microbiol 42(4):405–411

    Article  CAS  PubMed  Google Scholar 

  • Di Gioia D, Bertin L, Fava F, Marchetti L (2001a) Biodegradation of hydroxylated and methoxylated benzoic, phenylacetic and phenylpropenoic acids present in olive mill wastewaters by two bacterial strains. Res Microbiol 152:83–93

    Article  PubMed  Google Scholar 

  • Di Gioia D, Fava F, Bertin L, Marchetti L (2001b) Biodegradation of synthetic and naturally occurring mixtures of mono-cyclic aromatic compounds present in olive mill wastewaters by two aerobic bacteria. Appl Microbiol Biotechnol 55:619–626

    Article  PubMed  Google Scholar 

  • Dinges R (1976) Water hyacinth culture for wastewater treatment. Texas Dept. of Health Resources, Austin, TX, p 143

    Google Scholar 

  • Dinsdale RM, Hawkes FR, Hawkes DL (1997) Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res 31:163–169

    Article  CAS  Google Scholar 

  • Eaton D, Chang H, Kirk TK (1980) Fungal decolorization of kraft bleach plant effluent. Tappi J 63:103–106

    CAS  Google Scholar 

  • Ehaliotis C, Papadopoulou K, Kotsou M, Mari I, Balis C (1999) Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol Ecol 30:301–311

    Article  CAS  PubMed  Google Scholar 

  • El-Bestawy E, El-Masry MH, El-Adl NE (2005) The potentiality of free Gram-negative bacteria for removing oil and grease from contaminated industrial effluents. World J Microbiol Biotechnol 21(6-7):815–822. doi:10.1007/s11274-004-2239-8

    Article  CAS  Google Scholar 

  • Erguder TH, Guven E, Demirer GN (2000) Anaerobic treatment of olive mill wastewaters in batch reactors. Process Biochem 36(3):243–248

    Article  CAS  Google Scholar 

  • Ettayebi K, Errachidi F, Jamai L, Tahri-Jouti AM, Sendide K, Ettayebi M (2003) Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol Lett 223(2):215–219

    Article  CAS  PubMed  Google Scholar 

  • Farhadian M, Borghei M, Umrania VV (2007) Treatment of beet sugar water by UAFB bioprocess. Bioresour Technol 98:3080–3083

    Article  CAS  PubMed  Google Scholar 

  • Feijoo G, Vidal G, Moreira MT, Mendez R, Lema JM (1995) Degradation of high molecular weight compounds of kraft pulp mill effluents by a combined treatment with fungi and bacteria. Biotechnol Lett 17:1261–1266

    Article  CAS  Google Scholar 

  • Ferreira VS, Magalhaes DB, Kling SH, da Silva JG, Bon EPS (2000) Ndemethylation of methylene blue by lignin peroxidase from Phanerochaete chrysosporium: stoichiometric relation for H2O2 consumption. Appl Biochem Biotechnol 84–86:255–265

    Article  PubMed  Google Scholar 

  • Field JA, De Jong E, Feijoo Costa G, De Bont JAM (1993) Screening for ligninolytic fungi applicable to the degradation of xenobiotics. Trends Biotechnol 14:44–49

    Article  Google Scholar 

  • Fiestas Ros de Ursinos JA, Borja-Padilla R (1996) Biomethanization. Int Biodeter Biodegr 38:145–153

    Article  CAS  Google Scholar 

  • Fogarty WM, Kelly CT (1990) Microbial enzymes and biotechnology, 2nd edn. Kluwer, Netherlands. ISBN 1851664866

    Book  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317

    Article  CAS  PubMed  Google Scholar 

  • Fu YZ, Viraraghavan T (2000) Removal of a dye from aqueous solution by the fungus Aspergillus niger. Water Qual Res J Can 35:95–111

    CAS  Google Scholar 

  • Gale N (1986) The role of algae and other microorganisms in metal detoxification and environmental clean-up. Biotechnol Bioeng Symp 16:171–180

    CAS  Google Scholar 

  • Gangagni Rao A, Venkata NG, Krishna PK, Chandrasekhar Rao N, Venkata MN, Jetty A, Sarma PN (2005) Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR). Bioresour Technol 96:87–93

    Article  CAS  PubMed  Google Scholar 

  • Gantzer CJ, Cunningham AB, Gujer W, Gutekunet B, Heijnem JJ, Lightfoot EN, Odham G, Rosenberg E, Zehander, SAJB (1989) Exchange process at the fluid biofilm interface. In: Characklis WG, Wildere PA (eds) Report of Dahlem workshop on structure and function of biofilms, Berlin, November 27th–December 2. Wiley, New York. ISBN:0-471 92480-6

    Google Scholar 

  • Garcia-Calderon D, Buffiere P, Moeltta R, Elmaleh S (1998) Anaerobic digestion of wine distillery wastewater in down-flow fluidized bed. Water Res 32:3593–3600

    Article  CAS  Google Scholar 

  • Gehara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33:230–238

    Article  Google Scholar 

  • Gharsallah N (1993) Production of single cell protein from olive mill wastewater by yeast. Environ Technol 14:391–395

    Article  CAS  Google Scholar 

  • Glazer AN, Nikaido H (1995) Microbial biotechnology: fundamentals of applied microbiology. University of California, Berkeley, WH Freeman, USA. ISBN 0-71672-608-4

    Google Scholar 

  • Glynn-Henery J (1989) Water pollution. In: Heinke GW, Glynn Henery J (eds) Environmental science and engineering. Prentice-Hall, Englewood Cliffs, NJ, pp 297–329

    Google Scholar 

  • Gordon R (1994) Bioremediation and its applications to Exxon Valdez oil spill in Alaska. Ray’s Environmental Science Website, http://www.geocities.com

  • Gray NF (1989) Biology of wastewater treatment. Oxford University Press, Oxford

    Google Scholar 

  • Guiot SR, Van den Berg L (1985) Performance of an upflow anaerobic reactor combining a sludge blanket and a filter treating sugar waste. Biotechnol Bioeng 27:800–806

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mukerji KG (2001) Bioremediation: past, present and future. In: Tewari R, Mukerji KG, Gupta JK, Gupta LK (eds) Role of microbes in the management of environmental pollution. A.P.H., New Delhi, pp 73–81

    Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973

    CAS  Google Scholar 

  • Hamdi M, Ellouz R (1992a) Bubble column fermentation of olive mill wastewaters by Aspergillus niger. J Chem Technol Biotechnol 54:331–335

    Article  CAS  Google Scholar 

  • Hamdi M, Ellouz R (1992b) Use of Aspergillus niger to improve filtration of olive mill waste-waters. J Chem Technol Biotechnol 53:195–200

    Article  CAS  Google Scholar 

  • Hamdi M, Ellouz R (1993) Treatment of detoxified olive mill wastewaters by anaerobic filter and aerobic fluidized bed process. Environ Technol 14:183–188

    Article  CAS  Google Scholar 

  • Hamdi M, Garcia JL (1991) Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresour Technol 38:23–29

    Article  CAS  Google Scholar 

  • Hamdi M, BouHamed H, Ellouz R (1991a) Optimization of the fermentation of olive mill waste-waters by Aspergillus niger. Appl Microbiol Biotechnol 36:285–288

    Article  CAS  Google Scholar 

  • Hamdi M, Khadir A, Garcia J (1991b) The use of Aspergillus niger for the bioconversion of olive mill waste-waters. Appl Microbiol Biotechnol 34:828–831

    CAS  Google Scholar 

  • Hawkes FR, Donnelly T, Anderson GK (1995) Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Res 29:525–533

    Article  CAS  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC (2013) Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603

    Article  PubMed  CAS  Google Scholar 

  • Hillman WS (1976) Calibrating duckweeds: light, clocks, metabolism and flowering. Science 193:353–458

    Article  Google Scholar 

  • Horan NJ (1990) Biological wastewater treatment systems. Theory and operation. Wiley, Chichester

    Google Scholar 

  • Hussein H, Ibrahim SF, Kandeel K, Moawad H (2004) Biosorption of heavy metals from wastewater using Pseudomonas sp. Electron J Biotechnol 7(1):0717–3458

    Article  Google Scholar 

  • Ibrahim A, Yeoh BG, Cheah SC, Ma AN, Ahmad S, Chew TY, Raj R, Wahid MJA (1984) Thermophilic anaerobic contact digestion of palm oil mill effluent. Water Sci Technol 17:155–165

    Google Scholar 

  • Jameel AT, Muyibi SA, Olanrewaju AA (2011) Comparative study of bioreactors used for palm oil mill effluent treatment based on chemical oxygen removal efficiencies. In: Alam MDZ, Jameel AT, Amid A (eds) Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM), vol III. IIUM, Kuala Lumpur, pp 277–284. ISBN 9789674181444

    Google Scholar 

  • Jin B, van Leeuwen J, Patel B (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34:59–65

    Article  CAS  Google Scholar 

  • Jin B, Yu Q, van Leeuwen J (2001) A bioprocessing mode for simultaneous fungal biomass protein production and wastewater treatment using an external air-lift bioreactor. J Chem Technol Biotechnol 76:1041–1048

    Article  CAS  Google Scholar 

  • Kahmark KA, Unwin JP (1999) Pulp and paper effluent management. Water Environ Res 71:836–852

    Article  CAS  Google Scholar 

  • Kalyuzhnyi S, de los Santos LE, Martinez JR (1998) Anaerobic treatment of raw and preclarified potato-maize wastewater in a UASB reactor. Bioresour Technol 66:198–199

    Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Heavy metals biosorption site in Aspergillus niger. Bioresour Technol 61:221–227

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Kirk TK, Tien M, Johnstud SC, Eriksson KE (1986) Lignin degrading activity of Phanerochaete chrysosporium Burds: comparison of cellulase negative and other strains. Enzyme Microb Technol 8:75–80

    Article  CAS  Google Scholar 

  • Kissi M, Mountadar M, Assobhei O, Gargiulo E, Palmieri G, Giardina P (2001) Roles of two white-rot basidiomycete fungi in decolorization and detoxification of olive mill wastewater. Appl Microbiol Biotechnol 57(1–2):221–226

    CAS  PubMed  Google Scholar 

  • Knupp G, Rucker G, Ramos-Cormenzana A, Garrido Hoyos S, Neugebauer M, Ossenkop T (1996) Problems of identifying phenolic compounds during the microbial degradation of olive mill wastewater. Int Biodeterior Biodegrad 38:277–282

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Lacina C, Germain G, Spiros AN (2003) Utilization of fungi for biotreatment of raw wastewaters. Afr J Biotechnol 2(12):620–630

    Article  Google Scholar 

  • Lan WU, Gang GE, Jinbao WAN (2009) Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J Environ Sci 21(2):237–242. doi:10.1016/S1001-0742(08)62257-3

    Article  CAS  Google Scholar 

  • Lankinen VP, Inkeroinen MM, Pellien J, Hatakka AI (1990) The onset of lignin modifying enzyme, decrease of AOX and colour removal by white rot fungi: growth on bleach plant effluent. Water Sci Technol 24:189–198

    Article  Google Scholar 

  • Leal K, Chachin E, Gutierez E, Fernandez N, Forster CF (1998) A mesophilic digestion of brewery wastewater in an unheated anaerobic filter. Bioresour Technol 65:51–55

    Article  CAS  Google Scholar 

  • Leslie Grady CP Jr, Daigger GT, Lim HC (1999) Biological wastewater treatment, 2nd edn. CRC, Boca Raton, FL, Revised & expanded

    Google Scholar 

  • Lettinga G, Velson AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  CAS  Google Scholar 

  • Lilly VM, Barnett HL (1951) Physiology of the fungi, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Livernoche D, Jurasek L, Desrochers M, Dorica J (1983) Removal of colour from kraft mill wastewater with cultures of white rot fungi ad with immobilized mycelium of Coriolus versicolor. Biotechnol Bioeng 25:2055–2065

    Article  CAS  PubMed  Google Scholar 

  • Lo KV, Liao PH, Gao YC (1994) Anaerobic treatment of swine wastewater using hybrid UASB reactor. Bioresour Technol 47:153–157

    Article  CAS  Google Scholar 

  • Malina JF, Yousef YA (1964) The fate of Coliform organisms in waste stabilization pond. J Water Pollut Control Fed 36:1432–1442

    CAS  Google Scholar 

  • Marques IP (2001) Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137:233–239

    Article  CAS  Google Scholar 

  • Marques IP, Teixeira A, Rodrigues L, Martins DS, Novais JM (1997) Anaerobic co-treatment of olive mill and piggery effluents. Environ Technol 18:265–274

    Article  CAS  Google Scholar 

  • Martin A, Borja R, Garcia I, Fiestas JA (1991) Kinetics of methane production form olive mill wastewater. Process Biochem 26:101–107

    Article  CAS  Google Scholar 

  • Mashitah MD, Zulfadhly Z, Bhatia S (1999) Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. Artif Cell Blood Substit Immobil Biotechnol 27:441–445

    Article  CAS  Google Scholar 

  • Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820

    Article  CAS  Google Scholar 

  • Maygaonkar PA, Wagh PM, Permeswaran U (2012) Biodegradation of distillery effluent by fungi. Biosci Discov 3(2):251–258

    Google Scholar 

  • McKay G, Ho YS, Ng JCY (1999) Biosorption of copper from waste water: a review. Separ Purif Meth 28:87–125

    Article  CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  PubMed  Google Scholar 

  • McNamara CJ, Anastasiou CC, Flaherty VO, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeter Biodegr 61:127–134

    Article  CAS  Google Scholar 

  • Meron A, Rebhum M, Sless B (1965) Quality changes as a function of detention time in wastewater stabilization ponds. J Water Pollut Control Fed 37(12):1657–1670

    CAS  PubMed  Google Scholar 

  • Miklosovicova L, Trzilova B (1991) Biodegradation of crude oil hydrocarbons in water environment. Biologia (Bratislava) 46:219–228

    CAS  Google Scholar 

  • Mogollon L, Rodriguez R, Larrota W, Raminez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotechnol 70:593–601

    Article  PubMed  Google Scholar 

  • Mohammad P, Azarmidokht H, Fatollah M, Mahboubeh B (2006) Application of response surface methodology for optimization of important parameters in decolorizing treated distillery wastewater using Aspergillus fumigatus UB2 60. Int Biodeter Biodegr 57(4):195–199

    Article  CAS  Google Scholar 

  • Mohorcic M, Friedrich J, Pavko A (2004) Decoloration of the diazo dye reactive black 5 by immobilized Bjerkandera adusta in a stirred tank bioreactor. Acta Chim Slov 51:619–628

    CAS  Google Scholar 

  • Monroy O, Johnson KA, Wheatley AD, Hawkes F, Caine M (1994) The anaerobic filtration of dairy waste: results of a pilot trial. Bioresour Technol 50:243–251

    Article  CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P, Bajpai PK (1999) Studies on decolourization and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochem 34:939–948

    Article  CAS  Google Scholar 

  • Najafpour GD, Zinatizadeh AAL, Mohamed AR, Hasnain IM, Nasrollahzadeh H (2006) High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem 41:370–379

    Article  CAS  Google Scholar 

  • Nebot E, Romero LI, Quiroga JM, Sales D (1995) Effect of the feed frequency on the performance of anaerobic filters. Anaerobe 1:113–120

    Article  CAS  PubMed  Google Scholar 

  • Nigam P, Banat IM, Oxspring D, Marchant R, Singh R, Smyth WF (1995) A new facultative anaerobic filamentous fungus capable of growth on recalcitrant textile dyes as sole carbon source. Microbios 84:171–185

    CAS  Google Scholar 

  • Ohimain EI, Olukole CD, Izah SC, Rita A, Eke RA, Okonkwo AC (2012) Microbiology of palm oil mill effluents. J Microbiol Biotechnol Res 2(6):852–857

    CAS  Google Scholar 

  • Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37. doi:10.1016/S0960-8524(02)00063-9

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ (1988) Micro-algae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • Oswald WJ, Golueke CG, Tyler RW (1967) Integrated pond systems for subdivisions. J Water Pollut Control Fed 39(8):1289

    Google Scholar 

  • Palma C, Moreira MT, Mielgo I, Feijoo G, Lema JM (1999) Use of a fungal bioreactor as a post treatment step for continuous decolorisation of dyes. Water Sci Technol 40:131–136

    Article  CAS  Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80

    Google Scholar 

  • Papadelli M, Roussis A, Papadopoulou K, Venieraki A, Chatzipavlidis I, Katinakis P, Balis K (1996) Biochemical and molecular characterization of an Azotobacter vinelandii strain with respect to its ability to grow and fix nitrogen in olive mill wastewater. Int Biodeter Biodegr 38:179–181

    Article  CAS  Google Scholar 

  • Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    Article  CAS  Google Scholar 

  • Parawira W, Murto M, Zvauya R, Mattiasson B (2006) Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renew Energy 31:893–903

    Article  CAS  Google Scholar 

  • Parhad NM, Rao NU (1976) Decrease of bacterial content in different types of stabilization ponds. Ind J Environ Health 18:33–46

    Google Scholar 

  • Pérez M, Romero LI, Sales D (1998) Comparative performance of high rate anaerobic thermophilic technologies treating industrial wastewater. Water Res 32:559–564

    Article  Google Scholar 

  • Perez M, Rodriguez-Cano R, Romero LI, Sales D (2007) Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater. Bioresour Technol 98:3456–3463

    Article  CAS  PubMed  Google Scholar 

  • Piperidou C, Chaidou C, Stalikas C, Soulti K, Pilidis G, Balis C (2000) Bioremediation of olive oil mill wastewater: chemical alterations induced by Azotobacter vinelandii. J Agr Food Chem 48:1941–1948

    Article  CAS  Google Scholar 

  • Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318

    Article  CAS  Google Scholar 

  • Prigione V, Varese GC, Casieri L, Filipello V (2008) Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresour Technol 99:3559–3567

    Article  CAS  PubMed  Google Scholar 

  • Rai LC, Gour JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Ramos-Cormenzana A, Juarez-Jimenez B, Garcia-Pareja MP (1996) Antimicrobial activity of olive mill waste-waters (alpechin) and biotransformed olive oil mill wastewater. Int Biodeter Biodegr 38:283–290

    Article  Google Scholar 

  • Ranalli A (1992) Microbiological treatment of oil mill waste waters. Grasas y Aceites 43:16–19

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV (1994) Microalgae for use in tropical aquaculture. 1. Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. J Appl Phycol 6(3):337–345

    Article  CAS  Google Scholar 

  • Rozzi A, Passino R, Limoni M (1989) Anaerobic treatment of olive mill effluents in polyurethane foam bed reactors. Process Biochem 24:68–74

    CAS  Google Scholar 

  • Ruiz I, Veiga MC, de Santiago P, Blázquez R (1997) Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Bioresour Technol 60:251–258

    Article  CAS  Google Scholar 

  • Sanjust E, Pompei R, Rescigno A, Rinaldi A, Ballero M (1991) Olive milling wastewater as a medium for growth of four Pleurotus species. Appl Biochem Biotechnol 31:223–235

    Article  CAS  PubMed  Google Scholar 

  • Saravanane R, Murthy DVS, Krishnaiah K (2001) Treatment of anti-osmotic drug based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Waste Manag 21:563–568

    Article  CAS  PubMed  Google Scholar 

  • Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 11:1648–1655

    Article  Google Scholar 

  • Sathishkumar M, Binupriya AR, Baik SH, Yun SE (2008) Biodegradation of crude Oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36(1):92–96

    CAS  Google Scholar 

  • Sayadi S, Ellouz R (1992) Decolourization of olive mill waste-waters by the white-rot fungus Phanerochaete chrysosporium: involvement of the lignin-degrading system. Appl Microbiol Biotechnol 37:813–817

    CAS  Google Scholar 

  • Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl Environ Microbiol 61:1098–1103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sayed S, de Zeeuw W, Lettinga G (1984) Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. Agr Waste 11:197–226

    Article  CAS  Google Scholar 

  • Sen S, Demirer GN (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37:1868–1878

    Article  CAS  PubMed  Google Scholar 

  • Sethupathi S (2004) Removal of residue oil from palm, oil mill effluent (POME) using chitosan. Universiti Sains, Malaysia

    Google Scholar 

  • Shaaban AM, Haroun BM, Ibraheem IBM (2004) Assessment of impact of Microcystis aeruginosa and Chlorella vulgaris in the uptake of some heavy metals from culture media. In: Proceedings of 3rd international conference on biology science, Faculty of Science, Tanta University, vol 3, 28–29 April, pp 433–450

    Google Scholar 

  • Shelef G, Soeder CJ (1980) Algal biomass: production and use. Elsevier/North Holland Biomedical Press, Amsterdam, p 852

    Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  • Soeder CJ, Payer HD, Runkel KH, Beine J, Briele E (1978) Sorption and concentration of toxic minerals by mass cultures of Chlorococcales. Mitt Internat Verein Limnol 21:575–584

    CAS  Google Scholar 

  • Sowmeyan R, Swaminathan G (2008) Evaluation of inverse anaerobic fluidized bed reactor for treating high strength organic wastewater. Bioresour Technol 99:3877–3880

    Article  CAS  PubMed  Google Scholar 

  • Spina F, Anastasi A, Prigione V, Tigini V, Varese GC (2012) Biological treatment of industrial wastewaters: a fungal approach. Chem Eng Trans 27:175–180

    Google Scholar 

  • Stronach SM, Rudd T, Lester JN (1987) Start-up of anaerobic bioreactors on high strength industrial wastes. Biomass 13:173–197

    Article  CAS  Google Scholar 

  • Takeno K, Yamaoka Y, Sasaki K (2005) Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria. World J Microbiol Biotechnol 21:1385–1391

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  PubMed  Google Scholar 

  • Tchobanoglous G (1987) Aquatic plant systems for wastewater treatment; engineering considerations. In: Smith WH, Reddy KR (eds) Aquatic plants for waste treatment and resource recovery. Magnolia, Orlando, FL, p 27

    Google Scholar 

  • Tebbutt THY (1983) Principles of water quality control. Pergamon, Oxford

    Google Scholar 

  • Tereshina VM, Mar’in AP, Kosyakov NV, Kozlov VP, Feofilova EP (1999) Different metal sorption capacities of cell wall polysaccharides of Aspergillus niger. Appl Biochem Microbiol 35:389–392

    Google Scholar 

  • Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32:1407–1416

    Article  CAS  Google Scholar 

  • Toldrá F, Flors A, Lequerica JL, Vallés S (1987) Fluidized bed anaerobic biodegradation of food industry wastewaters. Biol Wastes 21:55–61

    Article  Google Scholar 

  • Tomati U, Galli E, Di Lena G, Buffone R (1991) Induction of laccase in Pleurotus ostreatus mycelium grown in olive oil waste waters. Agrochimica 35:275–279

    CAS  Google Scholar 

  • Tripathi AK, Harsh NSK, Gupta N (2007) Fungal treatment of industrial effluents: a mini-review. Life Sci J 4(2):78–81

    CAS  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    Article  CAS  PubMed  Google Scholar 

  • Vinciguerra V, D’Annibale A, Delle MG, Giovannozzi SG (1995) Correlated effects during the bioconversion of waste olive waters by Lentinus edodes. Bioresour Technol 51:221–226

    Article  CAS  Google Scholar 

  • Vinciguerra V, D’Annibale A, Gacs-Baitz E, Delle Monache G (1997) Biotransformation of tyrosol by whole-cell and cell-free preparation of Lentinus edodes. J Mol Catal B Enzym 3:213–220

    Article  CAS  Google Scholar 

  • Vlissidis A, Zouboulis AI (1993) Thermophilic anaerobic digestion of alcohol distillery wastewaters. Bioresour Technol 43:131–140

    Article  CAS  Google Scholar 

  • Vyas BRM, Molitoris HP (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R. Appl Environ Microbiol 61(11):3919–3927

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Banks CJ (2007) Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter. Waste Manag 27:359–366

    Article  CAS  PubMed  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

  • Wong PK, Chan KY (1990) Growth and value of Chlorella salina grown on highly saline sewage effluent. Agr Ecosyst Environ 30(3–4):235–250

    Article  Google Scholar 

  • Yesilada O, Fiskin K, Yesilada E (1995) The use of white rot fungus Funalia Trogii (Malatya) for the decolourization and phenol removal from olive mill wastewater. Environ Technol 16:95–100

    Article  CAS  Google Scholar 

  • Yesilada O, Sik S, Sam M (1998) Biodegradation of olive oil mill wastewater by Coriolus versicolor and Funalia trogii: effects of agitation, initial COD concentration, inoculum size and immobilization. World J Microbiol Biotechnol 14:37–42

    Article  CAS  Google Scholar 

  • Yu H, Gu G (1996) Biomethanation of brewery wastewater using an anaerobic upflow blanket filter. J Clean Prod 4:219–223

    Article  Google Scholar 

  • Yu HQ, Hu ZH, Hong TQ, Gu GW (2002) Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle. Process Biochem 38:507–513

    Article  CAS  Google Scholar 

  • Zheng Z, Levin RE, Pinkham JL, Shetty K (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 34:31–37

    Article  CAS  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    Article  CAS  Google Scholar 

  • Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from wastewater. Rev Environ Contam Toxicol 192:159–195

    CAS  PubMed  Google Scholar 

  • Zouari N, Ellouz R (1996a) Microbial consortia for the aerobic degradation of aromatic compounds in olive oil mill effluent. J Ind Microbiol 16:155–162

    Article  CAS  Google Scholar 

  • Zouari N, Ellouz R (1996b) Toxic effect of coloured olive compounds on the anaerobic digestion of olive oil mill effluent in UASB-like reactors. J Chem Technol Biotechnol 66:414–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Sains Malaysia for the financial support under Research University (RUI) Grant, No.: 1001/PTEKIND/814147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Norli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bala, J.D., Lalung, J., Norli, I. (2015). Utilization of Microorganisms for Biopurification of Wastewaters (Agricultural and Industrial): An Environmental Perspective. In: Liong, MT. (eds) Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas. Microbiology Monographs, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-23183-9_2

Download citation

Publish with us

Policies and ethics