Skip to main content

Hybrid Classification of High-Dimensional Biomedical Tumour Datasets

  • Conference paper
  • First Online:
Advanced and Intelligent Computations in Diagnosis and Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 386))

Abstract

This paper concerns hybrid approach to classification of high-dimensional tumour data. The research presents a comparison of hybrid classification methods: bagging with Naive Bayes (NaiveBayes), IBk, J48 and SMO as base classifiers, random forest as a variant of bagging with a decision tree as a base classifier, boosting with NaiveBayes, SMO, IBk and J48 as base classifiers, and voting by all single classifiers using majority as a combination rule, as well as five single classification strategies, including k-nearest neighbours (IBk), J48, NaiveBayes, random tree and sequential minimal optimization algorithm for training support vector machines. The major conclusion drawn from the study was that hybrid classifiers has demonstrated its potential ability to accurately and efficiently classify both binary and multiclass high-dimensional sets of tumour specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Bagging Predictors. Technical Report 421, Department of Statistics, University of California, Berkeley (1994)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 26(2), 123–140 (1996)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Dziomdziora A.: Comparative Study of Feature Selection Methods for High-dimensional Biomedical Datasets (Masters thesis supervised by A. Wosiak), Łódz Unversity of Technology, Łódz, Poland (2014)

    Google Scholar 

  5. Elshazly, H.I., Elkorany, A.M., Hassanien, A.E., Azar, A.T.: Ensemble classifiers for biomedical data: performance evaluation. In: Proceedings of the 9th International Conference on Computer Engineering & Systems (ICCES), pp. 184–189 (2013)

    Google Scholar 

  6. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference in Machine Learning, pp. 325–332 (1996)

    Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decisiontheoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man, Cybern. Part C: Appl. Rev. 42(4), 463–484 (2012). doi:10.1109/TSMCC.2011.2161285

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuncheva, L.I.: Combining pattern classifiers, methods and algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  11. Li, X., Lu, H., Wang, M.: A Hybrid gene selection method for multi-category tumor classification using microarray data. Int. J. Bioautomation 17(4), 249–258 (2013)

    Google Scholar 

  12. Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)

    Article  Google Scholar 

  13. Mendialdua, I., Arruti, A., Jauregi, E., Lazkano, E., Sierra, B.: Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms. Neurocomputing 157, 46–60 (2015)

    Article  MATH  Google Scholar 

  14. Michalski, R.S., Tecuci, G.: Machine learning: a multistrategy approach. J. Morgan Kaufmann (1994)

    Google Scholar 

  15. Reboiro-Jato, M., Díaz, F., Glez-Peña, D., Fdez-Riverola, F.: A novel ensemble of classifiers that use biological relevant gene sets for microarray classification. Appl. Soft Comput. 17, 117–126 (2014)

    Article  Google Scholar 

  16. Rokach, L.: Pattern classification using ensemble methods. World Scientific Publishing Co. Inc, River Edge (2010)

    MATH  Google Scholar 

  17. Son, H., Kim, C., Hwang, N., Kim, C., Kang, Y.: Classification of major construction materials in construction environments using ensemble classifiers. Adv. Eng. Inf. 28(1), 1–10 (2014)

    Article  Google Scholar 

  18. Tiwari, M.: Microarrays and cancer diagnosis. J. Cancer Res. Ther. 8(1), 3–10 (2012)

    Article  MATH  Google Scholar 

  19. Wang, X., Gotoh, O.: A robust gene selection method for microarray-based cancer classification. Cancer Inf. 9, 15–30 (2010)

    Article  Google Scholar 

  20. Wang, S.L., Li, X.L., Fang, J.: Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumour classification. BMC Bioinformatics 13(178), 1–26 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F.: Gene selection from microarray data for cancer classification—a machine learning approach. Comput. Biol. Chem. 29, 37–46 (2005)

    Article  MATH  Google Scholar 

  22. Wolpert, D.H.: The supervised learning no-free-lunch. In: 6th Online World Conference on Theorems, Soft Computing in Industrial Applications, pp. 25–42 (2001)

    Google Scholar 

  23. Wosiak, A., Dziomdziora, A.: On Pairwise combinations of feature selection and classification methods for high-dimensional tumour biomedical datasets. Schedae Informaticae, 24 (Ahead of Print) (2015). doi:10.4467/20838476SI.15.005.3027

  24. Wozniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion pp. 3–17 (2014). doi:10.1016/j.inffus.2013.04.006

    Google Scholar 

  25. Wozniak, M., Kasprzak, A.: Data stream classification using classifier ensemble. Schedae Informaticae 23 (Ahead of Print) (2014). doi:10.4467/20838476SI.14.002.3019

  26. Zhang, X.W., Yap, J.L., Wei, D., Chen, F., Danchin, A.: Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis. Eur. J. Hum. Genet. 13(12), 1303–1311 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Byczkowska-Lipinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Byczkowska-Lipinska, L., Wosiak, A. (2016). Hybrid Classification of High-Dimensional Biomedical Tumour Datasets. In: Kowalczuk, Z. (eds) Advanced and Intelligent Computations in Diagnosis and Control. Advances in Intelligent Systems and Computing, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-319-23180-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23180-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23179-2

  • Online ISBN: 978-3-319-23180-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics