Skip to main content

Sentence-Normalized Conditional Narrowing Modulo in Rewriting Logic and Maude

  • Chapter
  • First Online:
Logic, Rewriting, and Concurrency

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9200))

  • 801 Accesses

Abstract

This work studies the relationship between verifiable and computable answers for reachability problems in rewrite theories with an underlying membership equational logic. These problems have the form

$$\begin{aligned} (\exists \bar{x})t(\bar{x})\rightarrow ^* t'(\bar{x}) \end{aligned}$$

with \(\bar{x}\) some variables, or a conjunction of several of these subgoals. A calculus that solves this kind of problems working always with normalized terms and substitutions has been developed. Given a reachability problem in a rewrite theory, this calculus can compute any normalized answer that can be checked by rewriting, or one that can be instantiated to that answer. Special care has been taken in the calculus to keep membership information attached to each term, to make use of it whenever possible.

Partially supported by MINECO Spanish project StrongSoft (TIN2012–39391–C04–04) and Comunidad de Madrid program N-GREENS Software (S2013/ICE-2731).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Conditional narrowing modulo in rewriting logic and Maude. In: Escobar [11], pp. 80–96

    Google Scholar 

  2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. In: Boehm, H., Lang, B., Yellin, D.M. (eds.) Conference Record of POPL 1994: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, Oregon, USA, 17–21 January 1994, pp. 268–279. ACM Press (1994)

    Google Scholar 

  3. Bae, K., Meseguer, J.: Model checking LTLR formulas under localized fairness. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 99–117. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using narrowing. In: Escobar [11], pp. 113–129

    Google Scholar 

  5. Bockmayr, A.: Conditional narrowing modulo a set of equations. Appl. Algebra Eng. Commun. Comput. 4, 147–168 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional equational theories modulo axioms. Technical report, C.S. Department, University of Illinois at Urbana-Champaign, August 2014. http://hdl.handle.net/2142/50289

  8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework: How to Specify, Program, and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

    Google Scholar 

  9. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Computat. 21(1–2), 59–88 (2008)

    Article  MATH  Google Scholar 

  10. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escobar, S. (ed.): WRLA 2014. LNCS, vol. 8663. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  12. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fay, M.: First-order Unification in an Equational Theory. University of California (1978)

    Google Scholar 

  15. Giovannetti, E., Moiso, C.: A completeness result for E-unification algorithms based on conditional narrowing. In: Boscarol, M., Aiello, L.C., Levi, G. (eds.) Foundations of Logic and Functional Programming. LNCS, vol. 306, pp. 157–167. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  16. Hamada, M.: Strong completeness of a narrowing calculus for conditional rewrite systems with extra variables. Electr. Notes Theor. Comput. Sci. 31, 89–103 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lucas, S., Meseguer, J.: Operational termination of membership equational programs: the order-sorted way. Electr. Notes Theor. Comput. Sci. 238(3), 207–225 (2009)

    Article  MATH  Google Scholar 

  19. Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor. Comput. Sci. 285(2), 121–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J., Klop, J. (eds.) CONCUR 1990 Theories of Concurrency: Unification and Extension. LNCS, vol. 458, pp. 384–400. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  21. Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meseguer, J.: Strict coherence of conditional rewriting Modulo axioms. Technical report, C.S. Department, University of Illinois at Urbana-Champaign, August 2014. http://hdl.handle.net/2142/50288

  24. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. High. Order Symb. Comput. 20(1–2), 123–160 (2007)

    Article  MATH  Google Scholar 

  25. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Algebra Eng. Commun. Comput. 5, 213–253 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rocha, C.: Symbolic reachability analysis for rewrite theories. Ph.D. thesis, C.S. Department, University of Illinois at Urbana-Champaign, February 2013. http://hdl.handle.net/2142/42200

  27. Viry, P.: Rewriting: an effective model of concurrency. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS, vol. 817, pp. 648–660. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

Download references

Acknowledgments

We are very grateful to the anonymous referees for all their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narciso Martí-Oliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I. (2015). Sentence-Normalized Conditional Narrowing Modulo in Rewriting Logic and Maude. In: Martí-Oliet, N., Ölveczky, P., Talcott, C. (eds) Logic, Rewriting, and Concurrency. Lecture Notes in Computer Science(), vol 9200. Springer, Cham. https://doi.org/10.1007/978-3-319-23165-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23165-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23164-8

  • Online ISBN: 978-3-319-23165-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics