Advertisement

Plant Mutagenesis and Crop Improvement

  • Ambash Riaz
  • Alvina GulEmail author

Abstract

To increase the production of food by a minimum of 70 % for the next decades is a big challenge. There is an urgent need to eradicate the hunger of an increasing human population, which is becoming disturbing because of climate change, decreasing water resources, a decline of arable land, and by the serious health and environmental hazard due to the use of agrochemicals. Increased production of quality food with low input is deemed to be a very fascinating option. On the other hand, the limitation of variations in plant crops, especially staple crops, limits the options of uncovering new alleles of genes. Hence, new variations among plant crops with new gene combinations and induced mutation is the better option thus far. Induced mutation uncovers the new combination of genes that result in a new breed with superior traits to the parents. In addition to that, cell and molecular biology methods are increasing the effectiveness and efficiency of mutation induction and detection of novel alleles of genes. Different mutagens mainly include physical and chemical mutagens and are now being applied by researchers for plant mutagenesis. This chapter reviews the methodology of mutation induction, mutagens that are being used for this purpose, and how they help us to improve the crop.

Keywords

Agrochemical Induced mutation Physical and chemical mutagens Mutagenesis 

References

  1. Adamu A, Aliyu H (2007) Morphogical effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci World J 2(4):9–12Google Scholar
  2. Adegoke J (1984) Bridge induction by sodium azide in Allium cepa Nig. J Genet 5:86Google Scholar
  3. Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173CrossRefGoogle Scholar
  4. Ahoowalia B (1967) Colchicine induced in polyploids in ryegrass Lolium perenne. L Euphytica 16:49–60CrossRefGoogle Scholar
  5. Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601Google Scholar
  6. Ando A, Montalván R (2001) Gamma-ray radiation and sodium azide (NaN3) mutagenic efficiency in rice. Crop Breed Appl Biotechnol 1(4):339–346CrossRefGoogle Scholar
  7. Anonymous (1995) Bureau of economic and agricultural statistics. BangkokGoogle Scholar
  8. Arenaz P, Hallberg L, Mancillas F, Gutierrez G, Garcia S (1989) Sodium azide mutagenesis in mammals: inability of mammalian cells to convert azide to a mutagenic intermediate. Mutat Res Lett 227(1):63–67CrossRefGoogle Scholar
  9. Auerbach C, Robson JM (1946a) Chemical production of mutations. Nature 157(3984):302PubMedCrossRefGoogle Scholar
  10. Auerbach C, Robson JM (1946b) The production of mutations by chemical substances. Proc R Soc Edinb B Biol 62:271–283Google Scholar
  11. Auerbach C, Robson J (1947) Tests of chemical substances for mutagenic action. Proc R Soc Edinb B Biol 62:284Google Scholar
  12. Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breed 120(3):262–264CrossRefGoogle Scholar
  13. Barro F, Fernandez-Escobar J, De la Vega M, Martin A (2003) Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica 129(1):1–6CrossRefGoogle Scholar
  14. Beddington J, Asaduzzaman M, Fernandez A, Clark M, Guillou M, Jahn M, Erda L, Mamo T, Van BN, Nobre C (2011) Achieving food security in the face of climate change: summary for policy makers from the Commission on Sustainable Agriculture and Climate ChangeGoogle Scholar
  15. Benedict JH, Altman DW (2001) Commercialization of transgenic cotton expressing insecticidal crystal protein. Genetic improvement of cotton USDA-ARS. Oxford & IBH, New Delhi, pp 136–201Google Scholar
  16. Bhattacharyya MK, Smith AM, Ellis T, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60(1):115–122PubMedCrossRefGoogle Scholar
  17. Blixt S (1972) Mutation genetics in Pisum. Agri Hortique Genetica 30:1–293Google Scholar
  18. Bregitzer P, Zhang S, Cho MJ, Lemaux PG (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated, meristematic tissues. Crop Sci 42:1303–1308CrossRefGoogle Scholar
  19. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150PubMedCrossRefGoogle Scholar
  20. Castillo AM, Cistue L, Valles MP, Sanz JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20(2):105–111CrossRefGoogle Scholar
  21. Chakrabarti SN (1995) Mutation breeding in India with particular reference to PNR rice varieties. J Nucl Agric Biol 24:73–82Google Scholar
  22. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94(8):4223–4228PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA, Chen T, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biol 10(1):86PubMedCentralPubMedCrossRefGoogle Scholar
  24. Chopra V (2005) Mutagenesis: investigating the process and processing the outcome for crop improvement. Curr Sci 89(2):353–359Google Scholar
  25. Creech RG (1965) Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52(6):1175–1186PubMedCentralPubMedGoogle Scholar
  26. Dribnenki J, Green A, Atlin G (1996) Linola™ 989 low linolenic flax. Can J Plant Sci 76(2):329–331CrossRefGoogle Scholar
  27. Elise S, Etienne-Pascal J, de Fernanda C-N, Gérard D, Julia F (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58(6):809–822CrossRefGoogle Scholar
  28. FAO-IAEA (2011) Mutant variety database. http://mvgs.iaea.org/AboutMutantVarieties.aspx
  29. Ferrie AMR (1999) Combining microspores and mutagenesis. In: PBI Bulletin National Research. Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, CanadaGoogle Scholar
  30. Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23(4):181–187PubMedCrossRefGoogle Scholar
  31. Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95(11):6262–6266PubMedCentralPubMedCrossRefGoogle Scholar
  32. Grant WF, Salamone MF (1994) Comparative mutagenicity of chemicals selected for test in the International Program on chemical safety's collaborative study on plant systems for the detection of environmental mutagens. Mutat Res 310(2):187–209PubMedCrossRefGoogle Scholar
  33. Green A (1986) A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Can J Plant Sci 66(3):499–503CrossRefGoogle Scholar
  34. Hannah C, Giroux M, Boyer C (1993) Biotechnological modification of carbohydrates for sweet corn and maize improvement. Sci Hortic 55:177–197CrossRefGoogle Scholar
  35. Hase Y, Shimono K, Inoue M, Tanaka A, Watanabe H (1999) Biological effects of ion beams in Nicotiana tabacum L. Radiat Environ Biophys 38(2):111–115PubMedCrossRefGoogle Scholar
  36. He Y, Wan GL, Jin ZL, Xu L, Tang GX, Zhou WJ (2007) Mutagenic treatments of cotyledons for in vitro plant regeneration in oilseed rape. In: GCIRC Proceedings of the 12th international rapeseed congress, vol II, GCIRC, Wuhan (China), Science Press, Monmouth Junction, NJ, pp 54–57Google Scholar
  37. Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20(4):577–585CrossRefGoogle Scholar
  38. Hofmann NE, Raja R, Nelson RL, Korban SS (2004) Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biol Plant 48(2):173–177CrossRefGoogle Scholar
  39. IAEA (1977) Technical report series No. 119, 289 pp. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  40. Iqbal MCM, Mollers C, Robbelen G (1994) Increased embryogenesis after colchicine treatment of microspore cultures of Brassica napus L. J Plant Physiol 143:222–226CrossRefGoogle Scholar
  41. Jayabalan N, Anthony P, Davey M, Power J, Lowe K (2004) Hemoglobin promotes somatic embryogenesis in peanut cultures. Artif Cells Blood Substit Biotechnol 32(1):149–157CrossRefGoogle Scholar
  42. Jia C, Li A (2008) Effect of gamma radiation on mutant induction of Fagopyrum dibotrys Hara. Photosynthetica 46(3):363–369CrossRefGoogle Scholar
  43. Jones JA, Starkey JR, Kleinhofs A (1980) Toxicity and mutagenicity of sodium azide in mammalian cell cultures. Mutat Res 77(3):293–299PubMedCrossRefGoogle Scholar
  44. Joseph R, Yeoh HH, Loh CS (2004) Induced mutations in cassava using somatic embryos and the identification of mutant plants with altered starch yield and composition. Plant Cell Rep 23(1–2):91–98PubMedGoogle Scholar
  45. Kaul M, Bhan A (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50(5):241–246PubMedCrossRefGoogle Scholar
  46. Khan S, Goyal S (2009) Improvement of mungbean varieties through induced mutations. African J Plant Sci 3(8):174–180Google Scholar
  47. Khan S, Al-Qurainy F, Anwar F (2009) Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environ Int J Sci Technol 4:1–21Google Scholar
  48. Kharkwal M, Shu Q (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38Google Scholar
  49. Kihlman B (1959) The effect of respiratory inhibitors and chelating agents on the frequencies of chromosomal aberrations produced by X-rays in Vicia. J Biophys Biochem Cytol 5(3):479–490PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kleinhofs A, Sander C, Nilan R, Konzak C (1974) Azide mutagenicity – mechanism and nature of mutants produced. Polyploidy and induced mutations in plant breeding proceedingsGoogle Scholar
  51. Kleinhofs A, Owais W, Nilan R (1978) Azide. Mutat Res 55(3):165–195PubMedCrossRefGoogle Scholar
  52. Konzak CF, Wickham IM, Dekock M (1972) Advances in methods of mutagen treatment. Induced Mutations and Plant Improvement 1970Google Scholar
  53. Kopecky D, Vagera J (2005) The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nigrum. Biol Plant 49(2):181–186CrossRefGoogle Scholar
  54. Kott LS (1996) Production of mutants using the rapeseed doubled haploid system. In: Induced Mutation and Molecular Techniques for Crop improvement. IAEA/FAO Proceedings of an international symposium on the use of induced mutations and molecular techniques for crop improvement, Vienne, Austria, pp 505–515Google Scholar
  55. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914):422–426PubMedCrossRefGoogle Scholar
  56. Latado RR, Adames AH, Neto AT (2004) In vitro mutation of chrysanthemum (Dendranthema grandifl ora Tzvelev) with ethylmethanesulphonate (EMS) in immature fl oral pedicels. Plant Cell Tissue Organ Cult 77(1):103–106CrossRefGoogle Scholar
  57. Lee JH, Lee SY (2002) Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tissue Organ Cult 71(2):165–171CrossRefGoogle Scholar
  58. Leyser O (1997) Auxins: lessons from a mutant weed. Physiol Plant 100:407–414CrossRefGoogle Scholar
  59. Li HZ, Zhou WJ, Zhang ZJ, Gu HH, Takeuchi Y, Yoneyama K (2005) Effect of gamma radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biol Plant 49(4):625–628CrossRefGoogle Scholar
  60. Love S, Baker T, Thompson‐Johns A, Werner B (1996) Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breed 115(2):119–122CrossRefGoogle Scholar
  61. Lundqvist U (1992) Mutation research in barley. Sveriges Lantbruksuniv, UppsalaGoogle Scholar
  62. MacLeod MR (1994) Analysis of an allelic series of mutants at the r locus of pea. PhD Thesis, University of East Anglia, NorwichGoogle Scholar
  63. Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Meksem K, Kahl G (eds) The handbook of plant mutation. Wiley-Blackwell-VCH. ISBN: 978-3-527-32604-4Google Scholar
  64. Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combined use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284Google Scholar
  65. Maherchandani N (1975) Effects of gamma radiation on the dormant seed of Avena fatu L. Radiat Bot 15(4):439–443CrossRefGoogle Scholar
  66. Maluszynski M (1990) Induced mutations—an integrating tool in genetics and plant breeding. In: Gene manipulation in plant improvement II. Springer, pp 127–162Google Scholar
  67. Maluszynski KN, Zanten LV, Ahlowalia BS (2000) Officially released mutant varieties, The FAO/IAEA Database. Mutat Breed Rev 12:1–12Google Scholar
  68. Mba C (2013) Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy 3(1):200–231. doi: 10.3390/agronomy3010200 CrossRefGoogle Scholar
  69. Mba C, Shu Q (2012) Gamma irradiation. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 91–98CrossRefGoogle Scholar
  70. Mba C, Afza R, Jain SM, et al. (2007) Induced Mutations for Enhancing Salinity Tolerance in Rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Berlin, pp 413–454Google Scholar
  71. Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, New York. ISBN 978-0-470-68648-5Google Scholar
  72. Mba C, Afza R, Shu Q, Shu Q, Forster B, Nakagawa H (2012a) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 83–90CrossRefGoogle Scholar
  73. Mba C, Guimaraes EP, Ghosh K (2012b) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7CrossRefGoogle Scholar
  74. Medrano H, Millo EP, Guerri J (1986) Ethyl-methane-sulfonate effects on anther cultures of nicotiana-tabacum. Euphytica 35(1):161–168CrossRefGoogle Scholar
  75. Mei M, Deng H, Lu Y, Zhuang C, Liu Z, Qiu Q, Qiu Y, Yang T (1994) Mutagenic effects of heavy ion radiation in plants. Adv Space Res 14(10):363–372PubMedCrossRefGoogle Scholar
  76. Mei M, Qiu Y, Sun Y, Huang R, Yao J, Zhang Q, Hong M, Ye J (1998) Morphological and molecular changes of maize plants after seeds been flown on recoverablf satellite. Adv Space Res 22(12):1691–1697PubMedCrossRefGoogle Scholar
  77. Meinke DW (1992) A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258(5088):1647–1650PubMedCrossRefGoogle Scholar
  78. Mendel G (1865) Versuche über Pflanzen-hybriden. Verhandlungen des Naturforsehenden Vereins in Brünn 4:3–47Google Scholar
  79. Mensah J, Akomeah P, Ekpekurede E (2005) Gamma irradiation induced variation of yield parameters in Cowpea (Vigna unguiculata (L.) Walp. Global J Pure Appl Sci 11(3)Google Scholar
  80. Merlot S, Giraudat J (1997) Genetic analysis of abscisic acid signal transduction. Plant Physiol 114(3):751–757PubMedCentralPubMedCrossRefGoogle Scholar
  81. Mostafa GG (2011) Effect of sodium azide on the growth and variability induction in Helianthus annuus L. Int J Plant Breed Genet 5:76–85CrossRefGoogle Scholar
  82. Mukhopadhyay A, Arumugam N, Sodhi YS, Gupta V, Pradhan AK, Pental D (2007) High frequency production of microspore derived doubled haploid (DH) and its application for developing low glucosinolate lines in Indian Brassica juncea. In: Proceedings of the 12th international rapeseed congress, Wuhan, pp 333–335Google Scholar
  83. Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87PubMedCrossRefGoogle Scholar
  84. Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Biol 46(1):475–496CrossRefGoogle Scholar
  85. Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M (2009) Climate change: impact on agriculture and costs of adaptation, vol 21. The International Food Policy Research InstituteGoogle Scholar
  86. Nilan R, Pearson O (1975) Lack of chromosome breakage by azide in embryonic shoots and microspores of barley. Barley Genet Newsl 5:33–34Google Scholar
  87. Nishimura R, Hayashi M, Wu G-J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914):426–429PubMedCrossRefGoogle Scholar
  88. Oka‐Kira E, Tateno K, Ki M, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44(3):505–515PubMedCrossRefGoogle Scholar
  89. Owais W, Kleinhofs A (1988) Metabolic activation of the mutagen azide in biological systems. Mutat Res 197(2):313–323PubMedCrossRefGoogle Scholar
  90. PICMA (Pharmacia Institute of China Medicine Academy) (1995) Modernization research of Chinese herbal medicine. The Press of Beijing Medicine University, Beijing, pp 156–187Google Scholar
  91. Predieri S, Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 117(3):217–227CrossRefGoogle Scholar
  92. Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y (2006) A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2, 4‐dichlorophenoxyacetic acid. Plant J 47(5):788–801PubMedCrossRefGoogle Scholar
  93. Raicu P, Mixich F (1992) Cytogenetic effects of sodium azide encapsulated in liposomes on heteroploid cell cultures. Mutat Res Lett 283(3):215–219CrossRefGoogle Scholar
  94. Rajasekaran K, Grula JW, Anderson DM (1996) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119(1):115–124CrossRefGoogle Scholar
  95. Rao DRM (1977) Relative effectiveness and efficiency of single and combination trataments using gamma-rays and sodiun azide ininducing chlrophyll mutations in rice. Cytologia 42:443–450CrossRefGoogle Scholar
  96. Rao MG, Rao VM (1983) Mutagenic efficiency, effectiveness and factor of effectiveness of physical and chemical mutagens in rice. Cytologia 48:427–436CrossRefGoogle Scholar
  97. Reddi TS, Rao DRM (1988) Relative effectiveness and efficiency of single and combination treatments using gamma rays and sodium azide in inducing chlorophyll mutations in rice. Cytologia 53:419CrossRefGoogle Scholar
  98. Rines H (1985) Sodium azide mutagenesis in diploid and hexaploid oats and comparison with ethyl methanesulfonate treatments. Environ Exp Bot 25(1):7–16CrossRefGoogle Scholar
  99. Ringler C, Rosegrant MW, Paisner MS (2000) Irrigation and water resources in Latin America and the Caribbean: Challenges and strategies. International Food Policy Research Institute (IFPRI)Google Scholar
  100. Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100(3):550–560CrossRefGoogle Scholar
  101. Roychowdhury R, Tah J (2011a) Chemical mutagenic action on seed germination and related agro-metrical traits in M1 Dianthus generation. Curr Botany 2(8):19–23Google Scholar
  102. Roychowdhury R, Tah J (2011b) Mutation breeding in Dianthus caryophyllus for economic traits. Electron J Plant Breed 2(2):282–286Google Scholar
  103. Rutger JN (1992) Impact of mutation breeding in rice. A review. Mutat Breed Rev 8:1–24Google Scholar
  104. Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet MGG 259(4):414–423PubMedCrossRefGoogle Scholar
  105. Schmülling T, Schäfer S, Romanov G (1997) Cytokinins as regulators of gene expression. Physiol Plant 100(3):505–519CrossRefGoogle Scholar
  106. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299(5603):109–112PubMedCrossRefGoogle Scholar
  107. Sharma JR, Lal RK, Misra HO, Gupta MM, Ram RS (1989) Potential of gemma-radiation enhancing the biosynthesis of tropane alkaloids in black henbane (Hyoscyamus-niger L.). Euphytica 40(3):253–258Google Scholar
  108. Shi SW, Wu JS, Liu HL (1995) In vitro selection of long-pod and dwarf mutants in Brassica napus L. Acta Agric Nucl Sin 9(4):252–253Google Scholar
  109. Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163(4):1449–1455PubMedCentralPubMedGoogle Scholar
  110. Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56(412):587–596PubMedCrossRefGoogle Scholar
  111. Shimazu T, Kurata K (1999) Relationship between production of carrot somatic embryos and dissolved oxygen concentration in liquid culture. Plant Cell Tissue Organ Cult 57(1):29–38CrossRefGoogle Scholar
  112. Siddiqui S, Meghvansi M, Hasan Z (2007) Cytogenetic changes induced by sodium azide (NaN3) on Trigonella foenum-graecum L. seeds. S Afr J Bot 73(4):632–635CrossRefGoogle Scholar
  113. Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829. doi: 10.1155/2011/314829 PubMedCentralPubMedCrossRefGoogle Scholar
  114. Smith S (2008) Intellectual property protection for plant varieties in the 21st century. Crop Sci 48:1277–1290CrossRefGoogle Scholar
  115. Stadler L (1928) Mutations in barley induced by x-rays and radium. Science 68(1756):186PubMedCrossRefGoogle Scholar
  116. Stadler LJ (1930) Some genitic effects of x-rays in plants. J Hered 21(1):3–20Google Scholar
  117. Stadler LJ (1931) The experimental modification of heredity in crop plants: induced chromosomal irregularities. I. Sci Agric 11(557–572):645–661Google Scholar
  118. Stadler L (1932) On the genetic nature of induced mutations in plants, reprinted from the Proceedings of the sixth international congress of genetics, vol 1, p 274Google Scholar
  119. Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, de Bruijn FJ (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant-Microbe Interact 11(7):684–697CrossRefGoogle Scholar
  120. Tah PR (2006) Induced macromutation in mungbean [Vigna radiata (L.) Wilczek]. Int J Bot 2(3):219–228CrossRefGoogle Scholar
  121. Tanaka A, Shikazono N, Yokota Y, Watanabe H, Tano S (1997) Effects of heavy ions on the germination and survival of Arabidopsis thaliana. Int J Radiat Biol 72(1):121–127PubMedCrossRefGoogle Scholar
  122. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  123. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4(1):12PubMedCentralPubMedCrossRefGoogle Scholar
  124. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7(1):19PubMedCentralPubMedCrossRefGoogle Scholar
  125. United Nations Organization (1982) United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 1982 Report to the General AssemblyGoogle Scholar
  126. Vasline A, Vennila S, Ganesan J (2005) Mutation – an alternate source of variability. UGC national seminar on present scenario in plant science research. Department of Botany, Annamalai University, Annamalainagar, p 42Google Scholar
  127. Wang T, Uauy C, Till B, Liu CM (2010) TILLING and associated technologies. J Integr Plant Biol 52(11):1027–1030PubMedCrossRefGoogle Scholar
  128. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15(5):444–447PubMedCrossRefGoogle Scholar
  129. Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba M, Suzette R, Ramos-Pamplona M, Mauleon R, Portugal A (2005) Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59(1):85–97PubMedCrossRefGoogle Scholar
  130. Xu L, Najeeb U, Naeem MS, Wan GL, Jin ZL, Khan F, Zhou WJ (2012) In vitro mutagenesis and genetic improvement. Technol Innov Major World Oil Crops 2:151–173. doi: 10.1007/978-1-4614-0827-7_6 CrossRefGoogle Scholar
  131. Yabuta T, Sumiki Y (1938) On the crystal of gibberellin, a substance to promote plant growth. J Agric Chem Soc Jpn 14:1526Google Scholar
  132. Yokota Y, Yamada S, Hase Y, Shikazono N, Narumi I, Tanaka A, Inoue M (2007) Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiat Res 167(1):94–101PubMedCrossRefGoogle Scholar
  133. Zaki M, Dickinson H (1991) Microspore-derived embryos in Brassica: the signifi cance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55CrossRefGoogle Scholar
  134. Zhang F, Aoki S, Takahata Y (2003) RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica 131:207–213CrossRefGoogle Scholar
  135. Zhou WJ, Hagberg P, Tang GX (2002a) Increasing embryogenesis and doubling efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica 128:27–34CrossRefGoogle Scholar
  136. Zhou WJ, Tang GX, Hagberg P (2002b) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations