Skip to main content

Fertilizers and Environment: Issues and Challenges

  • Chapter
Crop Production and Global Environmental Issues

Abstract

About 50 % of the increase in agricultural produce during the twentieth century was achieved by application of inorganic fertilizers to crop plants. Fertilizer application is still an important farm input that is required to achieve challenging yield targets of the twenty-first century. However, fertilizer application is known to deteriorate the environment around us. Therefore, better fertilizer use efficiency (FUE) is suggested for economical yields and a safer environment. This chapter first introduces the concept of FUE for a safer environment and then, subsequent topics detail factors affecting FUE and known management practices to enhance FUE at agricultural farms. Future research challenges relating to FUE and the environment are identified. The chapter, as a whole, summarizes important literature for farmers, policy makers, and scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alam SM, Shah SA, Iqbal MM (2005) Evaluation of method and time of fertilizer application for yield and optimum P-efficiency in wheat. Songklanakarin J Sci Technol 27:457–463

    Google Scholar 

  • Allison FE, Doestch IH, Roller EM (1953) Availability of fixed ammonium in soils containing different clay minerals. Soil Sci 75:371–381

    Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2004a) Implications of on‐ground nitrogen loading and soil transformations on ground water quality management. J Am Water Resour Assoc 40:165–186

    Article  CAS  Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2004b) Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J Hydrol 295:225–245

    Article  CAS  Google Scholar 

  • Ansari AA, Gill SS, Khan FA (2011) Eutrophication: threat to aquatic ecosystems. In: Ansari AA et al (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht. doi:10.1007/978-90-481-9625-8

    Chapter  Google Scholar 

  • Aoun M, Samrani AGE, Lartiges BS, Kazpard V, Saad Z (2010) Releases of phosphate fertilizer industry in the surrounding environment: investigation on heavy metals and pollution in soil. J Environ Sci 22:1387–1397

    Article  CAS  Google Scholar 

  • Aulakh MS (2010) Integrated nutrient management for sustainable crop production, improving crop quality and soil health, and minimizing environmental pollution. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, 1–6 Aug 2010, pp 79–82

    Google Scholar 

  • Aulakh MS, Malhi SS (2004) Fertilizer nitrogen use efficiency as influenced by interactions with other nutrients. In: Mosier AR, Syers JK, Freney JR (eds) SCOPE 65. Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC, pp 181–191

    Google Scholar 

  • Awan TH, Manzoor Z, Safdar ME, Ahmad M (2007) Yield response of rice to dynamic use of potassium in traditional rice growing area of Punjab. Pak J Agric Sci 44:130–135

    Google Scholar 

  • Aziz T, Rahmatullah MA, Maqsood MA, Tahir IA, Cheema MA (2006) Phosphorus utilization by six Brassica cultivars (Brassica juncea L.) from tri-calcium phosphate; a relatively insoluble P compound. Pak J Bot 38:1529–1538

    Google Scholar 

  • Aziz T, Steffens D, Schubert S (2011a) Variation in phosphorus efficiency among brassica cultivars. II: Root morphology and carboxylates exudation. J Plant Nutr 34:2127–2138

    Article  CAS  Google Scholar 

  • Aziz T, Rahatullah, Maqsood MA, Sabir M, Kanwal S (2011b) Categorization of Brassica cultivars for phosphorus acquisition from phosphate rock on basis of growth and ionic parameters. J Plant Nutr 34:522–533

    Article  CAS  Google Scholar 

  • Aziz T, Finnigen PM, Lambers H, Jost R (2014) Organ specific phosphorus allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant Cell Environ 37:943–960

    Article  CAS  PubMed  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Barshad I, Kishk FM (1970) Factors affecting potassium fixation and cation exchange capacities of soil vermiculite clays. Clays Clay Miner 18:127–137

    Article  CAS  Google Scholar 

  • Bhuyan MHM, Ferdousi MR, Iqbal MT (2012) Foliar spray of nitrogen fertilizer on raised bed increases yield of transplanted aman rice over conventional method. Int Sch Res Notes. doi:10.5402/2012/184953

    Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    Article  PubMed  Google Scholar 

  • Bruulsema TW, Witt C, García F, Li S, Rao TN, Chen F, Ivanova S (2008) A global framework for fertilizer BMPs. Better Crop 92:13–15

    Google Scholar 

  • Byrnes, BH (1988) The degradation of urease inhibitor phenyl phosphorodiamidate in soil systems and preference of N (n butyl) thiophosphoric triamide in flooded rice culture. Ph.D. Thesis, Technical University of Munich, Weibenstephan, Germany

    Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet the human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cantarella H, Quaggio JA, Gallo PB, Bolonhezi D, Rossetto R, Martins JLM, Paulino VJ, Alcântara PB (2005) Ammonia losses of NBPT-treated urea under Brazilian soil conditions. In: IFA international workshop on enhanced-efficiency fertilizers, Frankfurt, 28–30 June 2005 (CD-ROM)

    Google Scholar 

  • Cheraghi M, Lorestani B, Merrikhpour H (2012) Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biol Trace Elem Res 145:87–92

    Article  CAS  PubMed  Google Scholar 

  • Chien MM, Savant NK, Engel NGH (1988) Evaluation of cyclohexyl phosphoric and thiophosphorictriamides as sustained-action urease inhibitors in submerged soil. Agron Abstr 213

    Google Scholar 

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 209:267–322

    Article  CAS  Google Scholar 

  • Christianson, CB, Byrnes BH, Carmona G (1990) A comparison of sulfur and oxygen analogs of phosphoric triamide urease inhibitor in reducing urea hydrolysis and ammonia volatilization. Fertilizer Research 26:21–27

    Google Scholar 

  • Cole CV, Olsen SR (1959) Phosphorus solubility in calcareous soils: II. Effects of exchangeable phosphorus and soil texture on phosphorus solubility. Soil Sci Soc Am Proc 23:119–121

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Connor DJ, Loomis RS, Cassman KG (2011) Crop ecology: productivity and management in agricultural systems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758

    Article  CAS  PubMed  Google Scholar 

  • Craswell ET, De Datta SK, Obcemea WN, Hartantyo M (1981) Time and mode of nitrogen fertilizer application to tropical wetland rice. Fertil Res 2(4):247–259

    Article  Google Scholar 

  • Datta SD (1986) Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertil Res 9(1–2):171–186

    Article  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Article  Google Scholar 

  • Dixon RC (2003) Foliar fertilization improves nutrient use efficiency. Fluid J 2003:2

    Google Scholar 

  • Dobermann A, Cassman KG, Cruz PCS et al (1996) Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. II: Effective soil K-supplying capacity. Nutr Cycl Agroecosyst 46:11–21

    Article  Google Scholar 

  • Dobermann A, Witt C, Dawe D (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res 74:37–66

    Article  Google Scholar 

  • Dunlop J, Glass ADM, Tomkins BD (1979) The regulation of K+ uptake by ryegrass and white clover roots in relation to their competition for potassium. New Phytol 83:365–370

    Article  CAS  Google Scholar 

  • Elsken M, Pussemier L, Dumortier P, Van Langenhove K, Scholl G, Goeyens L, Focant JF (2013) Dioxin levels in fertilizers from Belgium: Determination and evaluation of the potential impact on soil contamination. Sci Total Environ 454–455:366–372

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspective. Wiley, New York, NY

    Google Scholar 

  • Evans A (2009) The feeding of the nine billion: global food security for the 21st century (a Chatham house report). Royal Institute of International Affairs, London

    Google Scholar 

  • FAGERIA NK (1992) Maximizing crop yields. Dekker, New York, 274 pp

    Google Scholar 

  • Fan M-S, Zhao F-J, Fairweather-Tait SJ et al (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324

    Article  CAS  PubMed  Google Scholar 

  • FAO (1972) The state of food and agriculture. Food and Agriculture Organization, Rome, pp 30–45

    Google Scholar 

  • FAO (2008) FAO statistical yearbook. Food and Agricultural Organization, Rome

    Google Scholar 

  • FAO (2011) Current world fertilizer trends and outlook to 2015. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014) Fertilizer consumption database. http://faostat3.fao.org/faostat-gateway/go/to/download/R/*/E. Accessed 5 Aug 2014

  • Feng ZH, Liu HF, Wang X (2009) Toxic substances contents in fertilizers and its environmental risk assessment in China. Soils and Fertilizers Sciences in China 4: S14–S31 (in Chinese)

    Google Scholar 

  • Fixen PE (2009) Nutrient use efficiency in the context of sustainable agriculture. In: IPNI symposium on nutrient use efficiency at the Latin American congress of soil science, San Jose, 16–20 Nov 2009

    Google Scholar 

  • Foster JB, Magdoff F (1998) Liebig, Marx, and the depletion of soil fertility: relevance for today’s agriculture. Mon Rev York 50:32–45

    Article  Google Scholar 

  • Franzen DW, Hopkins DH, Sweeney MD et al (2002) Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agron J 94:381–389

    Article  Google Scholar 

  • Freney JR, Keerthisinghe DG, Chaiwanakupt P, Phongpan S, Harrington K (1995) Effect of cyclohexylphosphorictriamide and N-(n-butyl) thiophosphorictriamide on ammonia loss and grain yield of flooded rice in Thailand following urea application. Fertil Res 40:225–233

    Article  CAS  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA et al (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869

    Article  PubMed  Google Scholar 

  • Gill MA, Mansoor S, Aziz T, Rahmatullah, Akhtar MS (2002) Differential growth response and phosphorus utilization efficiency of rice genotypes. Pak J Agric Sci 39(2):83–87

    Google Scholar 

  • Glass ADM, Perley JE (1980) Varietal differences in potassium uptake by barley. Plant Physiol 65:160–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glenn JC, Gordon TJ, Florescu E (2008) The millennium project: state of the future. World Federation of UN Associations, Washington, DC

    Google Scholar 

  • Gordon B (2005) Maximizing irrigated corn yields in the Great Plains. Better Crops 89(2):8–10

    Google Scholar 

  • GPRI (2014) Phosphorus. http://phosphorusfutures.net/. Accessed 5 Aug 2014

  • Greenwood DJ, Cleaver TJ, Turner MK, Hunt J, Niendorf KB, Loquens SMH (1980) Comparison of the effects of potassium fertilizer on the yield, potassium content and quality of 22 different vegetable and agricultural crops. J Agric Sci 95(2):441–456

    Article  CAS  Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  • Hartley TN, Macdonald AJ, McGrath SP, Zhao FJ (2013) Historical arsenic contamination of soil due to long-term phosphate fertiliser applications. Environ Pollut 180:259–264

    Article  CAS  PubMed  Google Scholar 

  • Hassan SW, Oad FC, Tunio S, Candahi AW, Siddiqui MH, Oad SM, Jagirani AW (2010) Effect of N application and N splitting strategy on maize N uptake, biomass production and physio-agronomic characteristics. Sarhad J Agric 26(4):551–558

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (1999) Soil fertility and fertilizers: an introduction to nutrient management, 6th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hebbar SS, Ramachandrappa BK, Nanjappa HV, Prabhakar M (2004) Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur J Agron 21:117–127

    Article  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334(6056):664. doi:10.1126/science.1211979

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Li P, Gong J, Wang Y (2007) Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 290:115–126

    Article  CAS  Google Scholar 

  • Hussain S, Maqsood MA (2011) Root zone temperature influences nutrient accumulation and use in maize. Pak J Bot 43:1551–1556

    Google Scholar 

  • Hussain S, Rahmatullah, Maqsood MA, Kanwal S (2010) Root-zone temperature influences zinc requirement of maize cultivars on a calcareous loam soil. J Plant Nutr 33:1960–1969

    Article  CAS  Google Scholar 

  • Hussain S, Maqsood M, Rahmatullah (2011) Zinc release characteristics from calcareous soils using diethylenetriaminepentaacetic acid and other organic acids. Commun Soil Sci Plant Anal 42:1870–1881

    Article  CAS  Google Scholar 

  • Hussain S, Maqsood MA, Aziz T, Basra SMA (2013) Zinc bioavailability response curvature in wheat grains under incremental zinc applications. Arch Agron Soil Sci 59:1001–1016

    Article  CAS  Google Scholar 

  • Jaga PK, Patel Y (2012) An overview of fertilizers consumption in India: determinants and outlook for 2020 – a review. Int J Sci Eng Technol 1(6):285–291

    Google Scholar 

  • Jat ML, Gerard B (2014) Nutrient management and use efficiency in wheat systems of South Asia, 1st edition. Adv Agron 125:171–259

    Article  Google Scholar 

  • Javied S, Mehmood T, Chaudhry M., Tufail M and Irafan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Micro chemical Journal 91: 94–99

    Google Scholar 

  • Javid A, Bajwa R, Manzoor T (2011) Biosorption of heavy metals by pretreated biomass of Aspergillus niger. Pak J Bot 43:419–425

    Google Scholar 

  • Ju XT, Kou CL, Christie P, Dou ZX, Zhang FS (2014) Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut 145:497–506

    Article  CAS  Google Scholar 

  • Junejo N, Khanif YM, Dharejo KA, Hanafi MM, Wan-Yunus WMZ (2011) Reduced NH3 losses by coating urea with biodegradable polymers and Cu in a sandy soil. Afr J Biotechnol 10:10618–10625

    CAS  Google Scholar 

  • Kanwal S, Rahmatullah, Maqsood MA, GulBakhat HFS (2009) Zinc requirement of maize hybrids and indigenous varieties on Udic Haplustalf. J Plant Nutr 32(3):470–478

    Article  CAS  Google Scholar 

  • Kaur T, Brar BS, Dhillon NS (2007) Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. Nutr Cycl Agroecosyst 10:110–121

    Google Scholar 

  • Keeney DR, Sahrawat KL (1986) Nitrogen transmissions in flooded rice soils. ASA, Madison, WI

    Google Scholar 

  • Kongshaug G, Bockman OC, Kaarstad O, Morka H (1992) Inputs of trace elements to soils and plants, Proc. Chemical Climatology and Geomedical Problems, Norsk Hydro: Oslo, Norway

    Google Scholar 

  • Koohafkan P, Altieri MA, Gimenez EH (2012) Green agriculture: foundations for biodiverse, resilient and productive agricultural systems. Int J Agric Sustain 10:61–75

    Article  Google Scholar 

  • Krauss A (2004) Balanced fertilization, the key to improve fertilizer use efficiency. In: AFA 10th international annual conference Cairo, Egypt, 20–22 Jan 2004

    Google Scholar 

  • Ladha JK, Pathak H, Krupnik TJ (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156

    Article  CAS  Google Scholar 

  • Lahmar R, Bationo BA, Dan Lamso N et al (2012) Tailoring conservation agriculture technologies to West Africa semi-arid zones: building on traditional local practices for soil restoration. Field Crop Res 132:158–167

    Article  Google Scholar 

  • Lehmann J, Schroth G (2003) Nutrient leaching. In: Schroth G, Sinclair F (eds) Trees, crops and soil fertility. CABI Publishing, Wallingford, pp 151–166

    Google Scholar 

  • Leung AOW, Luksemburg WJ, Wong AS, Wong MH (2007) Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in Southeast China. Environ Sci Technol 41:2730–2737

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Ma L et al (2013) An analysis of China’s fertilizer policies: impacts on the industry, food security, and the environment. J Environ Qual 42:972–981

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Gao Y, Zhang X, Tian Y, Zhang Z et al (2014) Effect of optimal daily fertigation on migration of water and salt in soil, root growth and fruit yield of cucumber (Cucumis sativus L.) in solar-greenhouse. PLoS One 9(1):e86975. doi:10.1371/journal.pone.0086975

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu C, Wang K, Zheng X (2012a) Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 9:839–850

    Article  CAS  Google Scholar 

  • Liu G, Li Y, Alva AK, Porterfield DM, Dunlop J (2012b) Enhancing nitrogen use efficiency of potato and cereal crops by optimizing temperature, moisture, balanced nutrients and oxygen bioavailability. J Plant Nutr 35:428–441

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Jiang J, Chen N, Yang X, Xiong Z, Zou J (2012c) Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci Total Environ 426:166–171

    Article  CAS  PubMed  Google Scholar 

  • Loganathan P, Hedley MJ (1997) Downward movement of cadmium and phosphorus from phosphatic fertilizers in pasture soil in New Zealand. Environ Pullut 95(3):319–324

    Article  CAS  Google Scholar 

  • Lu W., Lindau CW, Pardue JH, Patrick WH, WH Jr, Reddy KR, Khind CS (1989) Poyential of phenyl phosphorodiamidate and N- (n butyl) thiophosphoric tri amide for inhibiting urea hydrolysis in simulated oxidized and reduced soils. Commun Soil Sci Plant Analysis 20:775–788

    Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackay AD, Barber SA (1984) Soil temperature effects on root growth and phosphorus uptake by corn. Soil Sci Soc Am J 48:818–823

    Article  CAS  Google Scholar 

  • Mahler RL, Naylor DV, Fredrickson MK (1984) Hot water extraction of boron from soils using sealed plastic pouches. Commun Soil Sci Plant Anal 15:479–492

    Article  CAS  Google Scholar 

  • Malavolta E (1985) Potassium status of tropical and subtropical region soils. In: Munson R (ed) Potassium in agriculture. ASA CSSA and SSSA, Madison, WI, pp 163–200

    Google Scholar 

  • Mallarino AP, Wittry DJ (2004) Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precis Agric 5:131–144

    Article  Google Scholar 

  • Manivannan P, Jayachandran SS (2011) A study of air pollution around a fertilizer plant. IUP J Environ Sci V(4):21–25

    Google Scholar 

  • Maqsood MA, Rahmatullah, Kanwal S, Aziz T, Ashraf M (2009) Evaluation of Zn distribution among grain and straw of twelve indigenous wheat (Triticum aestivum L.) genotypes. Pak J Bot 41(1):225–231

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press International, San Diego, CA

    Google Scholar 

  • Mehadi AA, Taylor RW, Shuford JW (1990) Prediction of fertilizer phosphate requirement using the Langmuir adsorption maximum. Plant Soil 122:267–270

    Article  CAS  Google Scholar 

  • Mengel K, Haeder HE (1973) Potassium availability and its effect on crop production. Potash Rev 11:1

    Google Scholar 

  • Mi GH, Chen FJ, Wu QP, Lai NW, Yuan LX, Zhang FS (2010) Ideotype root architecture for efficient N acquisition by maize in intensive cropping systems. Sci China Life Sci 53:1369–1373

    Article  PubMed  Google Scholar 

  • Mo, CH., Cai, Q Y., Li, YH., Zeng, QY (2008) Occurrence of priority organic pollutants in the fertilizers, China. J Hazardous Materials 152:1208–1213

    Google Scholar 

  • Mosier AR, Syers JK, Freney JR (2004) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. Scope-65. Island Press, London

    Google Scholar 

  • Mueller TG, Pierce FJ, Schabenberger O, Warncke DD (2001) Map quality for site-specific fertility management. Soil Sci Soc Am J 65:1547–1558

    Article  CAS  Google Scholar 

  • Mulder WJ, Gosselink RJA, Vingerhoeds MH et al (2011) Lignin based controlled release coatings. Ind Crops Prod 34:915–920

    Article  CAS  Google Scholar 

  • Munson RD (ed) (1985) Potassium in agriculture. American Society Agronomy, Madison, WI

    Google Scholar 

  • Nastri A, Toderi G, Bernati E, Govi G (2000) Ammonia volatilization and yield response from urea applied to wheat with urease (NBPT) and nitrification (DCD) inhibitors. Agrochimica 44:231–239

    CAS  Google Scholar 

  • Neales TF (1960) Some effects of boron on root growth. Aust J Biol Sci 13(3):232–248

    CAS  Google Scholar 

  • Ni B, Liu M, Lü S et al (2011a) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175

    Article  CAS  PubMed  Google Scholar 

  • Ni BL, Liu MZ, Lu SY, Xie LH, Wang YF (2011b) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175. doi:10.1021/jf202131z

    Article  CAS  PubMed  Google Scholar 

  • Nunes JA, Batista BL, Rodrigues JL, Caldas NM, Neto JAG, Barbosa F Jr (2010) A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, cooper, manganese, nickel, lead and selenium in blood of the Brazilian population. J Toxicol Environ Health 73:878–887

    Article  CAS  Google Scholar 

  • Ongley ED (1996) Fertilizers as water pollutants. In: Control of water pollution from agriculture – FAO irrigation and drainage paper 55. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ortiz-Monasterio JI, Matson PA, Panek J, Naylor RL (1996) Nitrogen fertilizer management: consequences for N2O and NO emissions in Mexican irrigated wheat. In: Transactions 9th nitrogen workshop. Technische Universitat Braunschweig, Braunschweig, pp 531–534

    Google Scholar 

  • Osman KT (2013a) Soil organic matter. Springer, Dordrecht

    Book  Google Scholar 

  • Osman KT (2013b) Soils: principles, properties and management. Springer Science Business Media, Dodrecht, Netherland

    Google Scholar 

  • Palm CA, Myers RJK, Nandwa SM (1997) Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. Soil Science Society of America, Madison, WI, pp 193–217

    Google Scholar 

  • Pathak MD (1999) Groundwater development in Maharashtra State, India. In: 25th WEDC Integrated development for water supply and sanitation Conference Addis Ababa, Ethiopia

    Google Scholar 

  • Pierce FJ, Sadler EJ (1997) Adequacy of current fertilizer recommendations for site-specific management. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI

    Book  Google Scholar 

  • Prasad R (2008) Efficient fertilizer use: the key to food security and better environment. J Trop Agric 47:1–17

    Google Scholar 

  • Pregitzer KS, King JS (2005) Effect of soil temperature on nutrient uptake. In: BassiriRad H (ed) Nutrient acquisition by plants, an ecological perspective. Springer, Berlin, pp 277–310

    Chapter  Google Scholar 

  • Quevauviller P, Lachica M, Barahona E et al (1996) Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci Total Environ 178:127–132

    Article  CAS  Google Scholar 

  • Radel RJ, Randle AA, Gauntney J, Brock BR, Williams HM (1992) Thiophosphoryl triamide: a dual purpose urease/nitrification inhibitor. Fertil Res 31:275–280

    Article  CAS  Google Scholar 

  • Rahman MM, Amano T, Shiraiwa T (2009) Nitrogen use efficiency and recovery from N fertilizer under rice based cropping systems. Aust J Crop Sci 3:336–351

    CAS  Google Scholar 

  • Rahmatullah, Gill MA, Shaikh BZ, Salim M (1994) Bioavailability and distribution of P among inorganic fractions in calcareous soils. Arid Soil Res Rehab 8:227–234

    Article  CAS  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Raven KP, Loeppert RH (1997) Trace element composition of fertilizers and soil amendments. J Environ Qual 26:551–557

    Article  CAS  Google Scholar 

  • Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z (2012) Zinc nutrition in rice production systems: a review. Plant Soil 361:203–226

    Article  CAS  Google Scholar 

  • Roberts TL (2008) Improving nutrient use efficiency. Turk J Agric For 32:177–182

    Google Scholar 

  • Roy AH, Hammond LL (2004) Challenges and opportunities for the fertilizer industry. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC, pp 233–243

    Google Scholar 

  • Sadras VO, Lemaire G (2014) Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res 164:54–64

    Article  Google Scholar 

  • Salvagiotti F, Castellarin JM, Miralles DJ, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop Res 113:170–177

    Article  Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ et al (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. In: Buresh RJ, Sanchez PA, Calhoun FG (eds) Replenishing soil fertility in Africa. Soil Science Society of America and American Society of Agronomy, Madison, WI, pp 1–46

    Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109:6348–6353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):77–80

    CAS  Google Scholar 

  • Seniczak S, Dabrowski J, Klimek A, Kaczmarek S (1998) The mites associated with young Scots pine forests polluted by a copper smelting works in Glogow, Poland. In: Mitchell R, Horn D, Needham GR, Welbourn WC (eds) Acarology IX: Proceedings, vol 1. Ohio Biological Survey, Columbus, OH, pp 573–574

    Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2012) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot. doi:10.1093/jxb/ers342

    Google Scholar 

  • Shorrocks V (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Sitthaphanit S, Limpinuntana V, Toomsan B, Panchaban S, Bell RW (2009) Fertilizer strategies for improved nutrient use efficiency on sandy soils in high rainfall regimes. Nutr Cycl Agroecosyst. doi:10.1007/s10705-009-9253-z

    Google Scholar 

  • Smeck NE (1985) Phosphorus dynamics in soils and landscapes. Geoderma 36:185–199

    Article  CAS  Google Scholar 

  • Smith CJ, Freney JR, Sherlock RR, Galbally IE (1991) The fate of urea nitrogen applied in a foliar spray to wheat at heading. Fertil Res 28:129–138. doi:10.1007/BF01049743

    Article  CAS  Google Scholar 

  • Soltanpour PN (1985) Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity 1. Commun Soil Sci Plant Anal 16:323–338

    Article  CAS  Google Scholar 

  • Sonmez S, Kaplan M, Somnez NK, Kaya H, Uz I (2007) Effect of both soil copper applications and foliar copper application frequencies on macronutrients contents of tomato plants. Asian J Chem 19:5372–5384

    CAS  Google Scholar 

  • Sowers KE, Pan WL, Miller BC, Smith JL (1994) Nitrogen use efficiency of split nitrogen application in soft white winter wheat. Agron J 86:942–948

    Article  Google Scholar 

  • Strandberg B, Damgaard C, Dalgaard T (2013) Time matters: effect of time since transition to organic farming on hedgerow ground vegetation. Agric Ecosyst Environ. http://orgprints.org/23272

    Google Scholar 

  • Swinton SM, Lowenberg-DeBoer J (1998) Evaluating the profitability of site-specific farming. J Prod Agric 11:439–446

    Article  Google Scholar 

  • Tan KH (2011) Principles of soil chemistry, 4th edn. CRC Press, Taylors and Francis Group, New York

    Google Scholar 

  • Taylor HM, Jordan WR, Sinclair TR (eds) (1983) Limitations to efficient water use in crop production. American Society Agronomy, Madison, WI

    Google Scholar 

  • Terman GL (1977) Yields and nutrient accumulation by determinate soybeans, as affected by applied nutrients. American Society Agronomy, Madison, WI

    Google Scholar 

  • Treadweell DD, Hochmuth GJ, Hochmuth RC, Simmone EH, Davis LL, Laughlin WL, Li Y, Olczyk T, Sprenkel RK, Osborne LS (2007) Nutrient management in organic greenhouse herb production: where are we now? Hortic Technol 17:461–466

    Google Scholar 

  • Tunney H, Breeuwsma A, Withers PJA, Ehlert PAI (1997) Phosphorus fertiliser strategies: present and future. In: Tunney H, Carton OT, Brooks PC, Johnston AE (eds) Phosphorus loss from soil to water. CAB International, Wallingford, pp 177–203

    Google Scholar 

  • Uma KO (1993) Nitrates in shallow (regolith) aquifers around Sokoto Town. Niger Environ Geol 21:70–76

    Article  CAS  Google Scholar 

  • UNEP (2000) Mineral fertilizer production and the environment, Part 1. The fertilizer industry’s manufacturing processes and environmental issues. United Nations Industrial Development Organization, Paris

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for recurring a non-renewable resources. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vann MC, Fisher LR, Jordan DL, Smith WD, Hardy DH, Stewart AM (2013) Potassium rate and application effect on flue-cured tobacco. Agron J 105:304–310

    Article  CAS  Google Scholar 

  • Viets FG Jr (1962) Micronutrient availability, chemistry and availability of micronutrients in soils. J Agric Food Chem 10:174–178

    Article  CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:19

    Article  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am J 29:677–678

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Liu M, Ni B et al (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J 167:342–348

    Article  CAS  Google Scholar 

  • Yamoah CF, Bationo A, Shapiro R, Koala S (2002) Trend and stability analyses of millet yields treated with fertilizer and crop residues in the Sahel. Field Crops Res 75:53–62

    Article  Google Scholar 

  • Yang Y-C, Zhang M, Zheng L et al (2011) Controlled release urea improved nitrogen use efficiency, yield, and quality of wheat. Agron J 103:479–485

    Article  Google Scholar 

  • Zaman M, Nguyen ML, Blennerhassett JD, Quin BF (2005) Increasing the utilization of urea fertilizer by pasture. In: Currie LD, Hanly JA (eds) Proceedings of the workshop on developments in fertilizer application technologies and nutrient management. Occasional report no. 18, Fertilizer and Lime Research Center, Massey University, Palmerston North

    Google Scholar 

  • Zhang FS, Cui ZL, Fan MS, Zhang W, Chen X, Jiang R (2011) Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J Environ Qual 40:1051–1057. doi:10.2134/jeq2010.0292

    Article  CAS  PubMed  Google Scholar 

  • Zhang WF, Ma L, Huang GQ, Wu L, Chen X, Zhang F (2013) The development and contribution of nitrogenous fertilizer in china and challenges faced by the country. Sci Agric Sin 46:3161–3171

    Google Scholar 

  • Zhao BQ, Li XY, Liu H et al (2011) Results from long-term fertilizer experiments in China: the risk of groundwater pollution by nitrate. NJAS Wageningen J Life Sci 58:177–183

    Article  Google Scholar 

  • Zhengli H, Zuxiang Z, Keneng Y, Changyong W (1988) Potential phosphate sorptivity value from Langmuir equation and its application for phosphate fertilizer recommendation. Acta Pedol Sin 4:10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aziz, T., Maqsood, M.A., Kanwal, S., Hussain, S., Ahmad, H.R., Sabir, M. (2015). Fertilizers and Environment: Issues and Challenges. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_21

Download citation

Publish with us

Policies and ethics