Skip to main content

A Framework for Building OLAP Cubes on Graphs

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9282))

Abstract

Graphs are widespread structures providing a powerful abstraction for modeling networked data. Large and complex graphs have emerged in various domains such as social networks, bioinformatics, and chemical data. However, current warehousing frameworks are not equipped to handle efficiently the multidimensional modeling and analysis of complex graph data. In this paper, we propose a novel framework for building OLAP cubes from graph data and analyzing the graph topological properties. The framework supports the extraction and design of the candidate multidimensional spaces in property graphs. Besides property graphs, a new database model tailored for multidimensional modeling and enabling the exploration of additional candidate multidimensional spaces is introduced. We present novel techniques for OLAP aggregation of the graph, and discuss the case of dimension hierarchies in graphs. Furthermore, the architecture and the implementation of our graph warehousing framework are presented and show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://grouplens.org/datasets/movielens.

  2. 2.

    https://www.themoviedb.org/.

References

  1. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc, Sebastopol (2013)

    Google Scholar 

  2. Petermann, A., Junghanns, M., Müller, R., Rahm, E.: Graph-based data integration and business intelligence with biiig. Proc. VLDB Endow. 7(13), 1577–1580 (2014)

    Article  Google Scholar 

  3. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl. Inf. Syst. 21(1), 41–63 (2009)

    Article  Google Scholar 

  4. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multidimensional networks. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 853–864. ACM (2011)

    Google Scholar 

  5. Wang, Z., Fan, Q., Wang, H., Tan, K.L., Agrawal, D., El Abbadi, A.: Pagrol: parallel graph olap over large-scale attributed graphs. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 496–507, March 2014

    Google Scholar 

  6. Ghrab, A., Skhiri, S., Jouili, S., Zimányi, E.: An analytics-aware conceptual model for evolving graphs. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 1–12. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Ghrab, A., Romero, O., Skhiri, S., Zimányi, E.: Analytics-Aware Graph Database Modeling, Technical report (2014) . http://research.euranova.eu/scientific-publications

  8. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 36(6), 35–41 (2010)

    Article  Google Scholar 

  9. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1:1–1:39 (2008)

    Article  Google Scholar 

  10. Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and OLAP over big data: current challenges and future research directions. In: DOLAP 2013 Proceedings of the Sixteenth International Workshop on Data Warehousing and OLAP, pp. 67–70. ACM, New York (2013)

    Google Scholar 

  11. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann, F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: towards self-service business intelligence. IJDWM 9(2), 66–88 (2013)

    Google Scholar 

  12. He, H., Singh, A.: Query language and access methods for graph databases. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. ADS, vol. 40, pp. 125–160. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on information networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 389–403. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Denis, B., Ghrab, A., Skhiri, S.: A distributed approach for graph-oriented multidimensional analysis. In: IEEE International Conference on Big Data, pp. 9–16 (2013)

    Google Scholar 

  15. Yin, M., Wu, B., Zeng, Z.: HMGraph OLAP: a novel framework for multi-dimensional heterogeneous network analysis. In: Proceedings of the 15th International Workshop on Data Warehousing and OLAP, pp. 137–144. ACM (2012)

    Google Scholar 

  16. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Allahbakhsh, M.: A framework and a language for on-line analytical processing on graphs. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 213–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Ghrab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E. (2015). A Framework for Building OLAP Cubes on Graphs. In: Tadeusz, M., Valduriez, P., Bellatreche, L. (eds) Advances in Databases and Information Systems. ADBIS 2015. Lecture Notes in Computer Science(), vol 9282. Springer, Cham. https://doi.org/10.1007/978-3-319-23135-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23135-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23134-1

  • Online ISBN: 978-3-319-23135-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics