Abstract
Graphs are widespread structures providing a powerful abstraction for modeling networked data. Large and complex graphs have emerged in various domains such as social networks, bioinformatics, and chemical data. However, current warehousing frameworks are not equipped to handle efficiently the multidimensional modeling and analysis of complex graph data. In this paper, we propose a novel framework for building OLAP cubes from graph data and analyzing the graph topological properties. The framework supports the extraction and design of the candidate multidimensional spaces in property graphs. Besides property graphs, a new database model tailored for multidimensional modeling and enabling the exploration of additional candidate multidimensional spaces is introduced. We present novel techniques for OLAP aggregation of the graph, and discuss the case of dimension hierarchies in graphs. Furthermore, the architecture and the implementation of our graph warehousing framework are presented and show the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc, Sebastopol (2013)
Petermann, A., Junghanns, M., Müller, R., Rahm, E.: Graph-based data integration and business intelligence with biiig. Proc. VLDB Endow. 7(13), 1577–1580 (2014)
Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl. Inf. Syst. 21(1), 41–63 (2009)
Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multidimensional networks. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 853–864. ACM (2011)
Wang, Z., Fan, Q., Wang, H., Tan, K.L., Agrawal, D., El Abbadi, A.: Pagrol: parallel graph olap over large-scale attributed graphs. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 496–507, March 2014
Ghrab, A., Skhiri, S., Jouili, S., Zimányi, E.: An analytics-aware conceptual model for evolving graphs. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 1–12. Springer, Heidelberg (2013)
Ghrab, A., Romero, O., Skhiri, S., Zimányi, E.: Analytics-Aware Graph Database Modeling, Technical report (2014) . http://research.euranova.eu/scientific-publications
Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 36(6), 35–41 (2010)
Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1:1–1:39 (2008)
Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and OLAP over big data: current challenges and future research directions. In: DOLAP 2013 Proceedings of the Sixteenth International Workshop on Data Warehousing and OLAP, pp. 67–70. ACM, New York (2013)
Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann, F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: towards self-service business intelligence. IJDWM 9(2), 66–88 (2013)
He, H., Singh, A.: Query language and access methods for graph databases. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. ADS, vol. 40, pp. 125–160. Springer, Heidelberg (2010)
Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on information networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 389–403. Springer, Heidelberg (2011)
Denis, B., Ghrab, A., Skhiri, S.: A distributed approach for graph-oriented multidimensional analysis. In: IEEE International Conference on Big Data, pp. 9–16 (2013)
Yin, M., Wu, B., Zeng, Z.: HMGraph OLAP: a novel framework for multi-dimensional heterogeneous network analysis. In: Proceedings of the 15th International Workshop on Data Warehousing and OLAP, pp. 137–144. ACM (2012)
Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Allahbakhsh, M.: A framework and a language for on-line analytical processing on graphs. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 213–227. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E. (2015). A Framework for Building OLAP Cubes on Graphs. In: Tadeusz, M., Valduriez, P., Bellatreche, L. (eds) Advances in Databases and Information Systems. ADBIS 2015. Lecture Notes in Computer Science(), vol 9282. Springer, Cham. https://doi.org/10.1007/978-3-319-23135-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-23135-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23134-1
Online ISBN: 978-3-319-23135-8
eBook Packages: Computer ScienceComputer Science (R0)