Skip to main content

Can Computer Vision Problems Benefit from Structured Hierarchical Classification?

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Included in the following conference series:

Abstract

While most current research in the classification domain still focuses on standard “flat” classification, there is an increasing interest in a particular type of structured classification called hierarchical classification. Incorporating knowledge about class hierarchy should be beneficial to computer vision systems as suggested by the fact that humans seem to organize objects into hierarchical structures based on visual geometrical similarities. In this paper, we analyze whether hierarchical classification provides better performance than flat classification by comparing three structured classification methods – Structured K-Nearest Neighbors, Structured Support Vector Machines and Maximum Margin Regression – with their flat counterparts on two very different computer vision tasks: facial expression recognition, for which we emphasize the underlying hierarchical structure, and 3D shape classification. The obtained results show no or only marginal improvement, which questions the way the data should be exploited for hierarchical classification in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Astikainen, K., Holm, L., Pitkänen, E., Szedmak, S., Rousu, J.: Towards structured output prediction of enzyme function. BioMed. Central (2008)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE PAMI 24(24), 509–522 (2002)

    Article  Google Scholar 

  3. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. JMLR 2, 265–292 (2001)

    Google Scholar 

  4. Ekman, P., Rosenberg, E.L.: What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS). Oxford University Press (1997)

    Google Scholar 

  5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE PAMI 28(4), 594–611 (2006)

    Article  Google Scholar 

  6. Kiritchenko, S., Matwin, S., Famili, A.F.: Functional annotation of genes using hierarchical text categorization. In: BioLINK SIG: LLIKB (2005)

    Google Scholar 

  7. Lampert, C., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot learning of object categories. IEEE PAMI (2013)

    Google Scholar 

  8. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: CVPRW, pp. 94–101 (2010)

    Google Scholar 

  9. Rodríguez-Sánchez, A., Tsotsos, J.: The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLOS ONE 7(8), 1–13 (2012)

    Article  Google Scholar 

  10. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (PCL). In: IEEE ICRA, pp. 1–4 (2011)

    Google Scholar 

  11. Rusu, R., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: IROS, pp. 2155–2162 (2010)

    Google Scholar 

  12. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M.: Robust object recognition with cortex-like mechanisms. IEEE PAMI 29(3), 411–426 (2007)

    Article  Google Scholar 

  13. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Shape Modeling Applications, pp. 167–178 (2004)

    Google Scholar 

  14. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. DMKD 22(1–2), 31–72 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Workshop on 3D Object Retrieval, pp. 57–62. ACM (2010)

    Google Scholar 

  16. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML, p. 104. ACM (2004)

    Google Scholar 

  17. Wang, X., Liu, Y., Zha, H.: Intrinsic spin images: A subspace decomposition approach to understanding 3D deformable shapes. In: 3DPVT, vol. 10, pp. 17–20 (2010)

    Google Scholar 

  18. Weidenbacher, U., Neumann, H.: Extraction of surface-related features in a recurrent model of V1–V2 interactions. PLOS ONE 4(6), e5909 (2009)

    Google Scholar 

  19. Wohlkinger, W., Vincze, M.: Ensemble of shape functions for 3D object classification. In: IEEE ROBIO, pp. 2987–2992 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hoyoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoyoux, T., Rodríguez-Sánchez, A.J., Piater, J.H., Szedmak, S. (2015). Can Computer Vision Problems Benefit from Structured Hierarchical Classification?. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics