Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computer in Biology and Medicine 37(2), 262–267 (2007)
CrossRef
Google Scholar
Azzopardi, G., Petkov, N.: Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recognition Letters 34, 922–933 (2013)
CrossRef
Google Scholar
Azzopardi, G., Petkov, N.: Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 490–503 (2013)
CrossRef
Google Scholar
Azzopardi, G., Rodríguez-Sánchez, A., Piater, J., Petkov, N.: A push-pull CORF model of a simple cell with antiphase inhibition improves SNR and contour detection. PLoS ONE 9(7), e98424 (2014)
CrossRef
Google Scholar
Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Medical Image Analysis 19(1), 46–57 (2015)
CrossRef
Google Scholar
Chauduri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood-vessels in retinal images using two-dimensional matched-filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)
CrossRef
Google Scholar
Chutatape, O., Liu Zheng, Krishnan, S.: Retinal blood vessel detection and tracking by matched gaussian and kalman filters. In: Chang, H., Zhang, Y. (eds.) Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS 1998), vol. 17, pp. 3144–9 (1998)
Google Scholar
Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C., Barman, S.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering 59(9), 2538–2548 (2012)
CrossRef
Google Scholar
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19(3), 203–210 (2000)
CrossRef
Google Scholar
Joachims, T.: Estimating the generalization performance of an svm efficiently. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, pp. 431–438. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Google Scholar
Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36(1–2), 149–176 (1949)
MATH
MathSciNet
CrossRef
Google Scholar
Lam, B., Gao, Y., Liew, A.C.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Transactions on Medical Imaging 29(7), 1369–1381 (2010)
CrossRef
Google Scholar
Liu, I., Sun, Y.: Recursive tracking of vascular networks in angiograms based on the detection deletion scheme. IEEE Transactions on Medical Imaging 12(2), 334–341 (1993)
CrossRef
Google Scholar
Marin, D., Aquino, A., Emilio Gegundez-Arias, M., Manuel Bravo, J.: A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Transactions on Medical Imaging 30(1), 146–158 (2011)
CrossRef
Google Scholar
Martinez-Pérez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11(1), 47–61 (2007)
CrossRef
Google Scholar
Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25(9), 1200–1213 (2006)
CrossRef
Google Scholar
Muduli, P., Pati, U.: A novel technique for wall crack detection using image fusion. In: 2013 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6, January 2013
Google Scholar
Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proc. of the SPIE - The International Society for Optical Engineering, Medical Imaging 2004, Image Processing, San Diego. CA, USA, February 16–19, 2004, pp. 648–56. (2004)
Google Scholar
Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T., Ter Haar Romeny, B., Zimmerman, J., Zuiderveld, K.: Adaptative Histogram Equalization and its Varations. Computer Vision Graphics and Image Processing 39(3), 355–368 (1987)
CrossRef
Google Scholar
Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging 26(10), 1357–1365 (2007)
CrossRef
Google Scholar
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)
MATH
MathSciNet
CrossRef
Google Scholar
Soares, J.V.B., Leandro, J.J.G., Cesar Jr, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25(9), 1214–1222 (2006)
CrossRef
Google Scholar
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)
CrossRef
Google Scholar
Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Medical Imaging 10(7), 1010–1019 (2001)
MATH
Google Scholar
Zhang, L., Zhang, Y., Wang, M., Li, Y.: Adaptive river segmentation in sar images. Journal of Electronics (China) 26(4), 438–442 (2009)
CrossRef
Google Scholar
Zhou, L., Rzeszotarski, M., Singerman, L., Chokreff, J.: The detection and quantification of retinopathy using digital angiograms. IEEE Transactions on Medical Imaging 13(4), 619–626 (1994)
CrossRef
Google Scholar