Skip to main content

Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9257)

Abstract

Various computer vision problems and applications rely on an accurate, fast head pose estimator. We model head pose estimation as a regression problem. We show that it is possible to use the appearance of the facial image as a feature which depicts the pose variations. We use a parametrized Multi-Variate Relevance Vector Machine (MVRVM) to learn the three rotation angles of the face (yaw, pitch, and roll). The input of the MVRVM is normalized mean pixel intensities of the face patches, and the output is the three head rotation angles. We evaluated our approach on the challenging YouTube faces dataset. We achieved a head pose estimation with an average error tolerance of \(\pm \)6.5\(^\circ \) in the yaw rotation angle, and less than \(\pm \)2.5\(^\circ \) in both the pitch and roll angles. The time taken in one prediction is 2-3 milliseconds, hence suitable for real-time applications.

Keywords

  • Head pose estimation
  • Real-time
  • MVRVM
  • YouTube faces

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23117-4_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23117-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Youtube

    Google Scholar 

  2. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1859–1866. IEEE (2014)

    Google Scholar 

  3. Best-Rowden, L., Klare, B., Klontz, J., Jain, A.K.: Video-to-video face matching: establishing a baseline for unconstrained face recognition. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)

    Google Scholar 

  4. Beveridge, J.R., Phillips, P.J., Bolme, D.S., Draper, B.A., Givens, G.H., Lui, Y.M., Teli, M.N., Zhang, H., Scruggs, W.T., Bowyer, K.W., Flynn, P.J., Cheng, S.: The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8, September 2013

    Google Scholar 

  5. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1063–1074 (2003)

    CrossRef  Google Scholar 

  6. Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9), 657–664 (2002)

    CrossRef  Google Scholar 

  7. Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 617–624. IEEE (2011)

    Google Scholar 

  8. Gu, L., Kanade, T.: 3d alignment of face in a single image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1305–1312. IEEE (2006)

    Google Scholar 

  9. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst, October 2007

    Google Scholar 

  10. Jones, M., Viola, P.: Fast multi-view face detection. Mitsubishi Electric Research Lab TR-20003-96, 3:14 (2003)

    Google Scholar 

  11. Kan, M., Xu, D., Shan, S., Li, W., Chen, X.: Learning prototype hyperplanes for face verification in the wild. IEEE Transactions on Image Processing 22(8), 3310–3316 (2013)

    CrossRef  Google Scholar 

  12. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)

    CrossRef  Google Scholar 

  13. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1994, pp. 84–91. IEEE (1994)

    Google Scholar 

  14. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    CrossRef  Google Scholar 

  15. Thayananthan, A., Navaratnam, R., Stenger, B., Torr, P.H.S., Cipolla, R.: Multivariate relevance vector machines for tracking. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 124–138. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  16. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. The Journal of Machine Learning Research 1, 211–244 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Transactions on Image Processing 21(2), 802–815 (2012)

    MathSciNet  CrossRef  Google Scholar 

  18. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 529–534. IEEE (2011)

    Google Scholar 

  19. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Selim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Selim, M., Pagani, A., Stricker, D. (2015). Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)