International Conference on Algorithmic DecisionTheory

ADT 2015: Algorithmic Decision Theory pp 253-269 | Cite as

Democratix: A Declarative Approach to Winner Determination

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9346)


Computing the winners of an election is an important task in voting and preference aggregation. The declarative nature of answer-set programming (ASP) and the performance of state-of-the-art solvers render ASP very well-suited to tackle this problem. In this work we present a novel, reduction-based approach for a variety of voting rules, ranging from tractable cases to problems harder than NP. The encoded voting rules are put together in the extensible tool Democratix, which handles the computation of winners and is also available as a web application. To learn more about the capabilities and limits of the approach, the encodings are evaluated thoroughly on real-world data as well as on random instances.


  1. 1.
    Ali, A., Meila, M.: Experiments with Kemeny ranking: what works when? Math. Soc. Sci. 64(1), 28–40 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 54–66. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Bennett, J., Lanning, S.: The Netflix prize. In: Proceedings of KDD Cup and Workshop (2007)Google Scholar
  4. 4.
    Betzler, N., Guo, J., Niedermeier, R.: Parameterized computational complexity of Dodgson and Young elections. Inf. Comput. 208(2), 165–177 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation of data reduction for exact Kemeny rank aggregation. Auton. Agent. Multi-Agent Syst. 28(5), 721–748 (2014)CrossRefGoogle Scholar
  6. 6.
    Bouveret, S.: Whale\(^3\): Which alternative is elected (2013).
  7. 7.
    Brandt, F., Geist, C.: Finding strategyproof social choice functions via SAT solving. In: Proceedings of AAMAS 2014, pp. 1193–1200. IFAAMAS (2014)Google Scholar
  8. 8.
    Brandt, F., Chabin, G., Geist, C.: Pnyx: a powerful and user-friendly tool for preference aggregation. In: Proceedings of AAMAS 2015, pp. 1915–1916. IFAAMAS (2015)Google Scholar
  9. 9.
    Bredereck, R.: Fixed-parameter algorithms for computing Kemeny scores - theory and practice. Pre-diploma thesis, Department of Mathematics and Computer Science, University of Jena (2009)Google Scholar
  10. 10.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  11. 11.
    Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.: ASP-Core-2: 4th ASP competition official input language format (2013)Google Scholar
  12. 12.
    Caragiannis, I., Covey, J., Feldman, M., Homan, C., Kaklamanis, C., Karanikolas, N., Procaccia, A., Rosenschein, J.: On the approximability of Dodgson and Young elections. Artif. Intell. 187, 31–51 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing Kemeny rankings. In: Proceedings of AAAI 2006, pp. 620–626. AAAI Press (2006)Google Scholar
  14. 14.
    Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for preference aggregation. In: Proceedings of AAAI 2004, pp. 697–702. AAAI Press (2004)Google Scholar
  15. 15.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of WWW 2001, pp. 613–622. ACM (2001)Google Scholar
  16. 16.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009) Google Scholar
  17. 17.
    Gebser, M., Janhunen, T., Rintanen, J.: ASP encodings of acyclicity properties. In: Proceedings of KR 2014. AAAI Press (2014)Google Scholar
  18. 18.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool, San Rafael (2012) Google Scholar
  19. 19.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Comm. 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
  20. 20.
    Geist, C., Endriss, U.: Automated search for impossibility theorems in social choice theory: ranking sets of objects. J. Artif. Intell. Res. 40, 143–174 (2011)MathSciNetMATHGoogle Scholar
  21. 21.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generat. Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  22. 22.
    Ghosh, S., Mundhe, M., Hernandez, K., Sen, S.: Voting for movies: the anatomy of a recommender system. In: Proceedings of Agents 1999, pp. 434–435. ACM (1999)Google Scholar
  23. 23.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Konczak, K.: Voting theory in answer set programming. In: Proceedings of WLP 2006. INFSYS Research Report, vol. 1843–06-02, pp. 45–53. Technische Universität Wien (2006)Google Scholar
  26. 26.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mao, A., Procaccia, A., Chen, Y.: Better human computation through principled voting. In: Proceedings of AAAI 2013, pp. 1142–1148. AAAI Press (2013)Google Scholar
  28. 28.
    Mattei, N., Walsh, T.: PrefLib: a library for preferences. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 259–270. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Narodytska, N., Walsh, T., Xia, L.: Combining voting rules together. In: Proceedings of ECAI 2012. FAIA, vol. 242, pp. 612–617. IOS Press (2012)Google Scholar
  30. 30.
    Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)CrossRefMATHGoogle Scholar
  31. 31.
    O’Neill, J.: (2013)Google Scholar
  32. 32.
    Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building with answer set programming in the Gioia-Tauro seaport. Theor. Pract. Log. Prog. 12(03), 361–381 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young elections. Theor. Comput. Syst. 36(4), 375–386 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Simjour, N.: Parameterized enumeration of neighbour strings and Kemeny aggregations. Ph.D. thesis, University of Waterloo (2013)Google Scholar
  35. 35.
    Tang, P., Lin, F.: Computer-aided proofs of Arrow’s and other impossibility theorems. Artif. Intell. 173(11), 1041–1053 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Information SystemsTU WienViennaAustria
  2. 2.School of Economic DisciplinesUniversity of SiegenSiegenGermany

Personalised recommendations