Reversible Limited Automata

  • Martin KutribEmail author
  • Matthias Wendlandt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)


A k-limited automaton is a linear bounded automaton that may rewrite each tape square only in the first k visits, where \(k\ge 0\) is a fixed constant. It is known that these automata accept context-free languages only. We investigate deterministic k-limited automata towards their ability to perform reversible computations, that is, computations in which every configuration has at most one predecessor. A first result is that, for all \(k\ge 0\), sweeping k-limited automata accept regular languages only. In contrast to reversible finite automata, all regular languages are accepted by sweeping 0-limited automata. Then we study the computational power gained in the number k of possible rewrite operations. It is shown that the reversible 2-limited automata accept regular languages only and, thus, are strictly weaker than general 2-limited automata. Furthermore, a proper inclusion between reversible 3-limited and 4-limited automata languages is obtained. The next levels of the hierarchy are separated between every k and \(k+3\) rewrite operations. Finally, it turns out that all k-limited automata accept Church-Rosser languages only, that is, the intersection between context-free and Church-Rosser languages contains an infinite hierarchy of language families beyond the deterministic context-free languages.


  1. 1.
    Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Axelsen, H.B.: Reversible multi-head finite automata characterize reversible logarithmic space. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 95–105. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefGoogle Scholar
  4. 4.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inform. Comput. 141, 1–36 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. ACM 15, 325–339 (1968)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hennie, F.C.: One-tape, off-line Turing machine computations. Inform. Control 8, 553–578 (1965)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11, 196–238 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  9. 9.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer Society (1997)Google Scholar
  10. 10.
    Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 83–98. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Kutrib, M., Malcher, A.: When Church-Rosser becomes context free. Int. J. Found. Comput. Sci. 18, 1293–1302 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206(9–10), 1142–1151 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78, 1814–1827 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Non-Classical Models of Automata and Applications (NCMA 2014), vol. 304, pp. 163–178. Austrian Computer Society, Vienna (2014). books@ocg.atGoogle Scholar
  16. 16.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and restarting automata. Int. J. Found. Comput. Sci. 21, 781–798 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kutrib, M., Wendlandt, M.: On simulation costs of unary limited automata. In: Descriptional Complexity of Formal Systems (DCFS 2015). LNCS. Springer (2015, to appear)Google Scholar
  18. 18.
    Kutrib, M., Worsch, T.: Degrees of reversibility for DFA and DPDA. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 40–53. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. System Sci. 60, 354–367 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Comput. Sci. 395, 101–131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Morita, K.: A deterministic two-way multi-head finite automaton can be converted into a reversible one with the same number of heads. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  25. 25.
    Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inform. Comput. 197, 1–21 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found. Comput. Sci. 25, 897–916 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund. Inform. 136, 157–176 (2015)MathSciNetGoogle Scholar
  28. 28.
    Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  29. 29.
    Průša, D.: Weight-reducing Hennie machines and their descriptional complexity. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations